Uniform version of Wiener-Tauberian theorem for equicontinuous subsets of subspaces of $L^1(X,\mu)$

C. R. BHATTA

Abstract: The Wiener-Tauberian theorem for \mathbb{R} says that the closed translation invariant subspace generated by an $f \in L^1(\mathbb{R})$ is $L^1(\mathbb{R})$ if and only if the Fourier transform \hat{f} of f never vanishes. In this paper we consider Banach subspace of $L^1(X, m)$ and prove the uniform version of the result for $L^1(X)$ and Segal algebra S(X) on hypergroup X, where X is locally compact hypergroup possessing Haar measure m.

2001 Mathematics subject classification: Primary 43A45, 43A65; Secondary 43A62, 22B05.

Key words: Wiener-Tauberian Theorem, translation invariant subspace, homogeneous spaces, locally compact hypergroup.

1. Introduction:

Let X be a locally compact Hausdorff topological space. Suppose that there is a continuous map $x \to \widetilde{x}$ from X into X such that $(\widetilde{x})^{\sim} = x$. Let μ be a regular Borel measure on X such that supp $\mu = X$.

Let $(B, \| . \|_B)$ be a Banach space of functions on X contained in $L^1(X, \mu)$ satisfying $\| . \|_B \ge \| . \|_1$. Suppose that there is a linear isometric map $f \to f^*$ from B into B such that $(f^*)^* = f$. Let there be maps σ , $\tau: X \to L(B, B)$ satisfying

- (B.1) $\| \sigma(x) \| \le C$, $\| \tau(x) \| \le C$ for all $x \in X$ and some $C \ge 1$.
- (B.2) there exists $e \in X$ such that $\sigma(e) = I$

For $\phi \in B^*$, the dual space of B, we define $\phi^*(f) = \phi(f^*)$. It is clear that $\phi^* \in B^*$ and $\|\phi^*\| = \|\phi\|$. The maps σ and τ induces σ^* and $\tau^*: X \to L(\hat{B}^*, B^*)$ defined by $\sigma^*(x)\phi(f) = \phi(\sigma(x)f)$ and $\tau^*(x)\phi(f) = \phi((\tau(x)f))$. It is clear that $\|\sigma^*(x)\| \le C$, $\|\tau^*(x)\| \le C$ and $\sigma^*(e) = 1$.

For $\phi \in B^*$ and $f \in B$, we define $f \circ \phi$ and $\phi \circ f$ by $f \circ \phi(x) = \phi^*(\sigma(x)f)$ and $f \circ \phi(x) = \phi(\sigma(\widetilde{x})f^*)$.

Lemma 1.1. Let B be a Banach subspace of $L^1(X, \mu)$ satisfying (B.1)–(B.2). Suppose that the measure μ satisfy

- (M.1.) The function $x \to f \otimes \phi(x)$ and $x \to \phi \otimes f(x)$ are measurable.
- (M.2.) For each $f \in B^*$ and $f, g \in B$, we have

$$\int_{X} \phi(\sigma(\widetilde{x})f) g^{*}(x) d\mu(x) = \int_{X} \phi(\sigma(x)f) g(x) d\mu(x).$$

(M.3.) For each $f \in B$, $\phi \in B^*$ and $x \in X$, we have

$$(\tau^*(x)\phi)^*(f) = \phi^*(\sigma(\widetilde{x})f)$$

(M.4.) For each $\phi \in B^*$; $f, g \in B$ and $x \in X$, we have

$$\int_{X} \phi^{*}(\sigma(\widetilde{y})g) \, \sigma(x) f(y) \, d\mu(y)$$

$$= \int_{Y} g(y) (\sigma^{*}(y)\phi)^{*}(\sigma(x)f) \, d\mu(y).$$

Then, we have, for $f, g \in B, \phi \in B^*$ and $x \in X$

(i)
$$f \odot \phi$$
, $\phi \odot f \in L^{\infty}(X, \mu) \subset B^*$

(ii)
$$(f \odot \phi)^* = \phi^* \odot f^*$$

(iii)
$$f \odot (\tau * (x) \phi)(e) = f \odot \phi(\widetilde{x})$$

(iii)
$$f \circ (g \circ \phi)(x) = \int_X g(y)(f \circ \sigma^*(y)\phi)(x) d\mu(y)$$

Proof: The proof of (i) and (ii) are same as in ([3], Lemma 3.1). For (iii)

$$(f \odot (\tau^* (x) \phi)) (e) = (\tau^* (x) \phi)^* (\sigma(e) f)$$

$$= (\tau^* (x) \phi)^* (f) = \phi^* (\sigma(\widetilde{x}) f) \quad (\text{using M.3})$$

$$= f \odot \phi(\widetilde{x}).$$

For (iv)

$$f \circ (g \circ \phi)(x) = \phi^* \circ g^* (\sigma(x)f) = \int_X \phi^* \circ g^* (y) (\sigma(x)f)(y) d\mu(y)$$

$$= \int_X \phi^* (\sigma(\widetilde{y})g) (\sigma(x)f)(y) d\mu(y)$$

$$= \int_{\widetilde{X}} g(y) (\sigma^*(y)\phi)^* (\sigma(x)f) d\mu(y)$$

$$= \int_Y g(y) (f \circ \sigma^*(y)\phi)(x) d\mu(y).$$

Theorem 1.2. Let X be a separable locally compact Hausdorff topological space. Suppose that B is a Banach space of functions on X satisfying (B.1.)–(B.2.) and μ a measure satisfying (M.1.)–(M.4.). Let $\mathcal{U} \subset B$ be such that $\{\Phi_h : h \in \mathcal{U}\}$ is uniformly equicontinuous. Suppose that there exists $h_0 \in S_1^B$ such that $|h(t)| \le |h_0(t)|$ and $||h||_B \le ||h_0||_B$ for all $h \in \mathcal{H}$ and $t \in X$. Let $\mathcal{U} \subset S_1^B$ be such that $\tau^*(x)\phi \in \mathcal{U}$ for all $x \in X$ and $\phi \in \mathcal{U}$. If $g \in S_1^B \cap U$ and for any $x,y \in X$, $g \odot \sigma^*(x)\tau^*(y)\phi$ vanishes at infinity for ϕ in U then $h \odot \phi$ vanishes at infinity for ϕ in U and h in \mathcal{U} .

Proof: Assume to the contrary that there exists $\delta > 0$ such that for every compact set K in X there exists $x_K \in X \sim K$, $h_K \in \mathcal{H}$ and $\phi_K \in \mathcal{U}$ satisfying $|h_K \odot \phi_K(x_K)| > \delta$.

Since X is separable and locally compact so X is σ -compact. Thus there exists an increasing sequence $\{K_n\}_{n\in\mathbb{N}}$ of compact set with $K_n\subset \operatorname{int} K_{n+1}$ and for F any compact

subset in X there exists n_0 with $F \subset K_{n_0}$. Write $h_{K_n} = h_n$, $\phi_{K_n} = \phi_n$ and $x_{K_n} = x_n$. We define a sequence of functions on X by

$$s_{n}(x) = (h_{n} \odot \tau^{*}(\widetilde{x}_{n}) \phi_{n})(x)$$

$$|s_{n}(x)| = |(\tau^{*}(\widetilde{x}_{n}) \phi_{n})^{*}(\sigma(x) h_{n}|$$

$$\leq ||(\tau^{*}(\widetilde{x}_{n}) \phi_{n})^{*}||_{B^{*}} ||(\sigma(x) h_{n}||_{B}$$

$$\leq C^{2} ||\phi_{n}||_{B^{*}} ||h_{n}||_{B} \leq C^{2}$$

Therefore $s_n \in L^{\infty} \subset B^*$.

Since $x \to \Phi_h(x)$ is uniformly equicontinuous so for given $\epsilon > 0$ there exists a neighbourhood U_X of x in X such that for $y \in U_x$

$$\|\Phi_h(x) - \Phi_h(y)\|_{\mathcal{B}} \le \varepsilon/C$$
 for all $h \in \mathcal{H}$.

Thus for $y \in U_r$, we have

$$\begin{split} |s_{n}(x) - s_{n}(y)| &= |(\tau^{*}(\widetilde{x}_{n}) \phi_{n})^{*}(\sigma(x) h_{n} - (\sigma(y) h_{n})| \\ &\leq \|(\tau^{*}(\widetilde{x}_{n}) \phi_{n}\|_{B^{*}} \|(\sigma(x) h_{n} - (\sigma(y) h_{n})\|_{B} \\ &\leq C \|\phi_{n}\|_{B^{*}} \|\Phi_{h_{n}}(x)\| - \Phi_{h_{n}}(y)\|_{B} \\ &\leq C \|\Phi_{h_{n}}(x) - \Phi_{h_{n}}(y)\|_{B} \leq C \|\Phi_{h_{n}}(y) - \Phi_{h_{n}}(y) - \Phi_{h_{n}}(y)\|_{B} \leq C \|\Phi_{h_{n}}(y) - \Phi_{h_{n}}(y) - \Phi_{h_{n}}(y)\|_{B} \leq C \|\Phi_{h_{n}}(y) - \Phi_{h_{n}}(y) - \Phi_{h_{n}}(y) - \Phi_{h_{n}}(y) - \Phi_{h_{n}}(y) - \Phi_{h_{n}}(y) - \Phi_{h_{n}}(y) + \Phi_{h_{n}}(y) - \Phi_{h_{n}}(y) + \Phi_{h_{n}}(y$$

By Ascoli's theorem ([2], Theorem 1.3.2) there exists a pointwise convergent subsequence $\{S_{n_j}\}$ converging to a continuous function s on X. Thus for fixed x,y in X

$$(\sigma(x)g)^*(y) s_{n_j}(y) \to (\sigma(x)g)^*(y) s(y) \text{ as } j \to \infty$$
also
$$|(\sigma(x)g)^*(y) s_{n_j}(y)| \le C^2 |(\sigma(x)g)^*(y)|$$

and $(\sigma(x)g)^* \in B \subset L^1(X, \mu)$, so by Lebesgue dominated convergence theorem

$$\int_{X} (\sigma(x)g)^{*}(y) s_{n_{j}}(y) d\mu(y) \to \int_{X} (\sigma(x)g)^{*}(y) s(y) d\mu(y) \text{ as } j \to \infty$$

$$\Rightarrow g \circ s_{n_{j}}(x) \to g \circ s(x) \text{ as } j \to \infty.$$
But
$$g \circ s_{n_{j}}(x) = (g \circ (h_{n_{j}} \circ \tau^{*}(\widetilde{x}_{n_{j}}) \phi_{n_{j}}))(x)$$

$$= \int_{X} h_{n_{j}}(y) g \circ \sigma^{*}(y) \tau^{*}(\widetilde{x}_{n_{j}}) \phi_{n_{j}}(x) d\mu(y)$$

$$= \int_{X} V_{n_{j}}^{x}(y) d\mu(y) \text{ (using Lemma 1.1(iv))}$$

Since $g \otimes \sigma^*(y) \tau^*(x) \phi$ vanishes at infinity uniformly for $\phi \in \mathcal{U}$ so there exists a compact set K_k such that

$$|g \odot \sigma^*(y) \tau^*(\widetilde{x}_{n_j}) \phi_{n_j}(x)| \le \frac{1}{k}$$

whenever $x \notin K_{k}$

$$|V_{n_{j}}^{x}(y)| \leq |h_{o}(y)| |g \otimes \sigma^{*}(y) \tau^{*}(\widetilde{x}_{n_{j}}) \phi_{n_{j}}(x)|$$

$$\leq |h_{o}(y)| ||\sigma^{*}(y) \tau^{*}(\widetilde{x}_{n_{j}}) \phi_{n_{j}}||_{B} * ||\sigma(x)g||_{B}$$

$$\leq C^{3} |h_{o}(y)|.$$

Applying Lebesgue dominated convergence theorem

$$\int_X V_{n_j}^X(y) \, d\mu(y) \to 0 \text{ as } j \to \infty.$$

$$\Rightarrow g \circ s_{n_j}(x) \to 0 \text{ as } j \to \infty.$$

so $g \odot s = 0$ but $g \in U$ so s = 0.

But

$$s_n(e) = n_0 \odot \tau^*(\widetilde{x}_n) \phi_n(e)$$

$$= (\tau^*(\widetilde{x}_{n_j}) \phi_n)^*(h_n)$$

$$= \phi_n^*(\sigma(x_n)h_n) = h_n \odot \phi_n(x_n)$$

so $|s_n(e)| \ge \delta$. Thus $|s(e)| \ge \delta$ which is a contradiction.

We now note that (B.1) - (B.2) and (M.1) - (M.4) above are satisfied if X is a locally compact hypergroup possessing a left Haar measure μ (in particular, if X is a locally compact group) and $B = L^1(X, \mu)$. In this case $\sigma(x) f = x f$.

Definition 1.3: A hypergroup is a locally compact space X and a binary mapping $(x,y) \rightarrow p_x * p_y$ of $X \times X$ into M(X) satisfying the following:

 The mapping (x,y) → p_x * p_y extends to a bilinear associative operation * from M(X) × M(X) into M(X) such that

$$\int_{Y} d\mu * \gamma = \int_{X} \int_{X} \int_{X} f d(p_x * p_y) d\mu(x) d\gamma(y) \text{ for all } f \in C_0(x).$$

- (ii) For each $x, y \in X$, the measure $p_x * p_y$ is a probability measure with compact support.
- (iii) The mapping $(\mu, \gamma) \to \mu * \gamma$ is continuous from $M^+(X) \times M^+(X)$ into $M^+(X)$ where $M^+(X)$ is given the weak topology with respect to the family $C_{00}^+(X) \cup \{1\}$.
- (iv) There exists an element e in X such that $p_x * p_e = p_e * p_x$ for all $x \in X$.
- (v) There exists a homeomorphic involution x→x of X onto X so that given x,y ∈ X, we have e ∈ supp (p_x* p_y) if and only if y = x and (p_x* p_y)[∞] = p_y* p_x.
- (vi) The map $(x,y) \rightarrow \text{supp } (p_x * p_y)$ is continuous from $X \times X$ into the space C(X) of compact subset of X, where C(X) is given the topology studied by Michael, a sub basis for which is given by ali $C_{U,V} = \{A \in C(X) : A \cap U \neq \emptyset \text{ and } A \subset V\}$ where U, V are open subsets of X.

We now note that (B.1) – (B.2) and (M.1) – (M.4) above are satisfied if X is a locally compact hypergroup possessing a left Haar measure μ (in particular, if X is a locally compact group) and $B = L^1(X, \mu)$. In this case $\sigma(x) f = x f$.

Since $\|xf\|_1 \le \|f\|$ so $\|\sigma(x)\| \le 1$ for all $x \in X$. The map τ on X is given by $\tau(y)f = \Delta(y)f_y$. For $f \in B$.

$$\|\tau(y)f\|_{1} \leq \Delta(y) \int_{X} |f|(x*y) d\mu(x)$$

$$= \Delta(y) \Delta(\widetilde{y}) \int_{X} |f|(x) d\mu(x)$$

$$= \|f\|_{1} ([1], 5.3B)$$

Thus $||\tau(y)|| \le 1$ for all $y \in X$.

For

$$f \in B, f^*(x) = \frac{f(\widetilde{x})}{\Delta(x)}.$$

For $\phi \in B^* = L^{\infty}(X, \mu)$ and $f \in B$,

$$\phi^*(f) = \int_X \phi(x) f^*(x) d\mu(x) = \int_X \frac{\phi(x) f(\widetilde{x})}{\Delta(x)} d\mu(x)$$

$$= \int_X \frac{\phi(\widetilde{x}) f(x)}{\Delta(x) \Delta(\widetilde{x})} d\mu(x)$$

$$= \int_X \phi(\widetilde{x}) f(x) d\mu(x)$$

Thus $\phi^*(x) = \phi(\widetilde{x})$

$$\sigma^*(x) \phi = \tilde{x} \phi \text{ and } \tau^*(y) \phi = \phi_{\tilde{y}}.$$

$$f \circ \phi(x) = \int_X \phi^*(y) x f(y) d\mu(y)$$

$$= \int_X \phi(\tilde{y}) f(x * y) d\mu(y)$$

$$= f * \phi(x)$$

(M.1)-(M.2) are satisfied as in ([3], lemma 3.1). For (M.3), let $f \in B$, $\phi \in B^*$, $x \in X$,

$$(\tau^*(x)\phi)^*(f) = \int_X \phi_{\widetilde{X}}(y) \frac{f(\widetilde{y})}{\Delta(y)} d\mu(y)$$

$$= \int_X \frac{\phi(y * \widetilde{x}) f(\widetilde{y})}{\Delta(y)} d\mu(y)$$

$$= \int_X \phi(\widetilde{y} * \widetilde{x}) f(y) d\mu(y)$$

$$= \int_X \int_X \phi(\widetilde{u}) f(y) d\mu(y) dp_{x * p_y}(u)$$

$$= \int_X \phi^*(x * y) f(y) d\mu(y)$$

$$= \int_X f(\widetilde{x} * y) \phi^*(y) d\mu(y) \quad ([1], 5.1 D)$$

$$= \phi^*(\sigma(\widetilde{x}) f)$$

For (M.4), let $\phi \in B^*$, $f, g \in B$ and $x \in X$

$$\int_{X} \phi^{*}(\sigma(\widetilde{y})g)(\sigma(x)f)(y) d\mu(y)$$

$$= \int_{X} \int_{X} \phi(\widetilde{u})g(\widetilde{y}*u) f(x*y) d\mu(y) d\mu(u)$$

$$= \int_{X} \int_{X} \phi(\widetilde{u})g(\widetilde{y}) x f(u*y) d\mu(u)$$

$$= \int_{X} g(\widetilde{y}) \int_{X} \frac{\phi^{*}(u*\widetilde{y})}{\Delta(y)} x f(u) d\mu(u) d\mu(y)$$

$$= \int_{X} \int_{X} g(y) \phi^{*}(u*g) x f(u) d\mu(y) d\mu(u)$$

$$= \int_{X} \int_{X} g(y) \phi(\widetilde{y}*\widetilde{u}) x f(u) d\mu(y) d\mu(u)$$

$$= \int_{Y} g(y) (\sigma^{*}(y)\phi)^{*}(\sigma(x)f) d\mu(y)$$

Thus we have the following generalization from separable locally compact group G to separable locally compact hypergroup X([3], Theorem 2.3)

Theorem 1.4. Let X be a separable locally compact hypergroup possessing a left Haar measure μ . Let $\mathcal{U} \subset L^1(X)$ be such that the family $\{\Phi_h : h \in \mathcal{U}\}$ is left uniformly equicontinuous. Suppose that there exists $h_0 \in S_1$ such that $|h(t)| \le |h_0(t)|$ for all $h \in \mathcal{H}$ and $t \in X$. Let $\mathcal{U} \subset S_\infty$ be left translation invariant. If $g \in U_0$ and $g * a(x) \to 0$ as $x \to \infty$ uniformly for $a \in \mathcal{U}$ then $h * a(x) \to 0$ as $x \to \infty$ uniformly for $a \in \mathcal{U}$ and $h \in \mathcal{H}$.

2. Segal Algebras on Hypergroups

Let X be a locally compact hypergroup possessing a left Haar measure μ . Segal algebras on locally compact hypergroups have studied and defined in [5] and [8] (For Segal algebras on groups see [4].

Definition 2.1. Let S(X) be a subspace of $L^1(X)$ which is a Banach space under a norm $\|\cdot\|_S$ such that $\|\cdot\|_S \ge \|\cdot\|_1$ and

S(i) S(X) is dense in $L^1(X)$.

S (ii) S (X) is left translation invariant and for some $\eta > 0$, $\|x f\|_{S} \le \eta \|f\|_{S}$ For each $f \in S(X)$ and $x \in X$.

S (iii) For each $f \in S(X)$, the mapping $x \to x f$ of X into S(X) is continuous.

Then S(X) will be called a Segal algebra. S(X) is said to be symmetric Segal algebra if for $f \in S(X)$, $f^* \in S(X)$ where

$$f^*(x) = \frac{f(\widetilde{x})}{\Delta(x)}$$
 and $||f||_S = ||f^*||_S$

In fact S(X) is Banach algebra under convolution. This can be seen as in ([6], § 4) Using vector valued integrals as in ([6], § 11, Lemma 1), the following result follows

Lemma 2.2. For any $\phi \in (S(X))^*$, $f \in L^1(X)$ and $g \in S(X)$, the following hold.

(i)
$$\phi(f * g) = \int_{X} f(y)\phi(\tilde{y}g) d\mu(y)$$

If $S(X)$ is symmetric, then

(ii)
$$\phi(g*f) = \int_X f(y)\phi(g_{\tilde{y}})a'\mu(y).$$

Let B = S(X) be a symmetric Segal algebra. Taking $\sigma(x) f = x f$ and $\tau(y) f = \Delta(y) f_y$ we have $\| \sigma(x) \| \le 1$ and $\| \tau(x) \| \le 1$ for all $x \in X$. Note that $(\tilde{y}f)^* = \Delta(y)(f^*)_y$. Since $x \to x f$ is continuous so $x \to f \odot \phi(x)$ and $x \to \phi \odot f(x)$ are measurable. Thus (M.1) is satisfied. For $\phi \in (S(X))^*$, $f, g \in S(X)$, we have

$$\int_{X} \phi(\widetilde{x}f) g^{*}(x) d\mu(x)$$

$$= \int_{X} \phi(xf) \frac{g^{*}(\widetilde{x})}{\Delta(x)} d\mu(x) = \int_{X} \phi(xf) g(x) d\mu(x)$$

Thus (M.2) is satisfied

$$((\tau^*(x)\phi)^*(f) = \phi(\tau(x)f^*) = \phi(\Delta(x)(f^*)_x$$
$$= \phi((_{\widetilde{x}}f)^*) = \phi^*(\sigma(\widetilde{x})f)$$

For (M.4), let $\phi \in S(X)^*$, $f, g \in S(X)$ and $x \in X$ we have

$$\int_{X} \phi^{*}(\sigma(\tilde{y})g)\sigma(x)f(y)d\mu(y)$$

$$= \int_{X} \phi^{*}((_{\tilde{y}}g))_{x}f(y)d\mu(y).$$

$$= \phi(g^{*}*(_{x}f)^{*})$$

$$= \phi^{*}(_{x}f*g)$$

$$= \int_{X} g^{*}(y)\phi(_{\tilde{y}}(_{x}f)^{*})d\mu(y)$$

$$= \int_{X} g(y)\phi(_{y}(_{x}f)^{*})d\mu(y).$$

$$= \int_{Y} g(y)(\sigma^{*}(y)\phi)^{*}(\sigma(x)f)d\mu(y).$$

Thus (M.4) is satisfied. Hence we have the following uniform version of the Wiener Tauberian Theorem for Segal algebras.

Theorem 2.3. Let X be a locally compact hypergroup possessing a left Haar measure μ . Suppose that S(X) is a symmetric Segal algebra on X. Let $\mathcal{U} \subset S(X)$ be such that the family $\{\Phi_h : h \in \mathcal{U}\}$ is left uniformly equicontinuous. Suppose that there exists $h_0 \in S_1$ (unit ball in S(X)) such that $|h(t)| \le |h_0(t)|$ and $||h||_S \le ||h_0||_S$ for all $h \in \mathcal{U}$ and $t \in X$. Let $\mathcal{U} \subset S_\infty$ (unit ball in $S(X)^*$) be such that $\sigma^*(x) \in \mathcal{U}$ for all $\phi \in \mathcal{U}$. If $g \in U_0$ and $g \circ a(x) \to 0$ as $x \to \infty$ uniformly for $a \in \mathcal{U}$ then $h \circ a(x) \to 0$ as $x \to \infty$ uniformly for $a \in \mathcal{U}$ and $a \in \mathcal{U}$.

3. Examples:

Let X be a unimodular locally compact hypergroup possessing a left Haar measure μ .

(a) $S(X) = L^{1}(X) \cap L^{p}(X) \ (1 \le p < \infty)$ $||f||_{S} = ||f||_{1} + ||f||_{p}$

Then S(X) is a Segal algebra

S(i) follows since $C_{\infty}(X)$ is dense in S(X)

S (ii) follows from ([1], 3.3 B)

S (iii) follows from ([1], 5.4, 2.2 B)

Clearly S(X) is symmetric

(b) $S(X) = L^{1}(X) \cap C_{0}(X)$ $||f||_{S} = ||f||_{1} + ||f||_{\infty}, f \in S(X)$

Then S(X) is a Segal algebra

S(i) follows since $C_{\infty}(X)$ is dense in S(X)

S (ii) follows from ([1], 3.3 B)

S (iii) follows from ([1], 2.2B, 4.2F)

Note that S(X) is symmetric since $||f^*||_{\infty} = ||f||_{\infty}$

REFERENCES

- R.I. Jewett, Spaces with an abstract convolution of measure, Advances in Math., 18(1975), 1–101.
- [2] J. L.Kelley, General Topology, D. Van Nostrand Company, Inc., 1961.
- [3] A.Kumar, & C.R. Bhatta, A uniform version of the Wiener-Tauberian theroem, Journal of Mathematical sciences, 2(2003), 63-71.
- [4] R.Larsen, T. S. Liu. & J. Wang, On functions with Fourier transforms in L^p, Michigan J. Math., 11(1964), 369-378.
- [5] H.Reiter, & J. D. Stegman, Classical harmonic analysis & locally compact groups, Oxford University Press, 2000.
- [6] R.Reiter, L¹-Algebra & Segal algebras, Lecture notes of Mathmatics, Berlin Heidelberg, New York, 1971.
- [7] A.Sitaram. On an analogue of the Wiener-Tauberian Theorem for symmetric spaces of the non-compact type. Pacific J. Math., 133 (1988), No. 1., 197–208.
- [8] H.C. Wang, Homogeneous Banach algebras, Marcel Dekker, Inc., New York and Basel, 1977.

CHET RAJ BHATTA

Central Department of Mathematics, Tribhuvan University, Kirtipur, Kathmandu, Nepal.

E-mail: crbhatta@yahoo.com