The Nepali Math. Sc. Report Vol. 29, No. 1 & 2, 2009

DCP Property of a Certain Combinations of de la Vallée Poussin Kernels

CHINTA MANI POKHAREL

Nepal Engineering College G.P.O. Box 10210 Kathmandu, Nepal email: chintam@nec.edu.np

Abstract: We shall established the DCP Property of certain Combinations of de la Vallée Poussin Kernels for some particular cases.

1. INTRODUCTION

Let \mathcal{A} denote the set of analytic functions in D, f^* g the Hadamard product or convolution between two members of \mathcal{A} . A domain $\Omega \subseteq C$ is said to be *convex in the direction* $e^{i\phi}$, $\phi \in \Re$, if and only if for every $a \in C$ the set.

$$\Omega \cap \{a + te^{i\varphi} : t \in \Re\}$$

is either connected or empty. Accordingly we define the class $\mathscr{K}(\phi) \subset \mathscr{A}, \phi \in \mathfrak{R}$, of the functions *convex in the direction* $e^{i\phi}$ as

 $\mathcal{H}(\phi) := \{f \in \mathcal{A} : f \text{ univalent and } f(D) \text{ convex in the direction } e^{i\phi}\}.$ Finally, a function $g \in \mathcal{A}$ is called *Direction-Convexity-Preserving* ($g \in DCP$) if and only if

 $g * f \in \mathcal{K}(f)$ for all $f \in \mathcal{K}(\phi)$ and all $\phi \in \mathfrak{R}$.

Functions in DCP have many other intriguing convolution-type properties, for instance the preservation of convex harmonic functions in D, and of Jordan curves

in the plane with convex interior domain; we refer to [7], [8] for more details. There one also finds a complete description of the members of DCP, namely

$$g \in DCP \iff g(z) + itzg'(z) \in \mathcal{K}(\frac{\pi}{2})$$
 for all $t \in \mathfrak{R}$.

Further it is known, that DCP functions are convex univalent.

The following criterion for membership in DCP is a slight variant of [7, Theorem 4].

Lemma 1 Let g be analytic in \overline{D} , convex univalent and let $u(t) := \text{Reg}(e^{it}), t \in \Re$. Then

 $g \in DCP$ if and only if

 $\sigma_{u} := (u''(t))^{2} - u'(t) u'''(t) \ge 0, t \in \Re$

The classical definition of the de la Vallée Poussin Kernel of order $n \in N$ is

$$w_{n}(t): = \frac{2^{n}(n!)^{2}}{(2n)!} (1 + \cos{(t)})^{n}$$
(1)

$$=\frac{1}{\binom{2n}{n}}\sum_{k=-n}^{n}\binom{2n}{n+k}e^{ikt}.$$

But here we are interested in the analytic version of the de la Vallée Poussin Kernel

$$V_{n}(z) = \frac{1}{\binom{2n}{n}} \sum_{k=1}^{n} \binom{2n}{n+k} z^{k}, z \in C.$$
⁽²⁾

Note that

$$2\text{Re } V_n(e^{it}) = w_n(t) - 1, n \in \mathbb{N}.$$
(3)

2. MAIN RESULTS

In this section, we again come back to the analytic version of the classical de la Vallee Poussin Kernels. Let us recall that the function

$$V_{n}(z) = \frac{1}{\binom{2n}{n}} \sum_{k=1}^{n} \binom{2n}{n+k} z^{k}, \ z \in D,$$

is the de la Vallee Poussin kernel of order n.

[22]

In the

is i 190 sub cor bel

Th

The

Pro

i Ser

In [9], St. Ruscheweyh and J. K. Wirths proved that for $0 \le x \le \infty$ and for $n \in \mathbb{N}$, the function

$$f_{n}(z) = \sum_{k=1}^{n} {\binom{n}{k}} x^{k} {\binom{2k}{k}} V_{k}(z), z \in D,$$
(4)

is convex. When they proved this, the class DCP was not even defined. Later in 1989 [7], St. Ruscheweyh and L. Salinas introduced the class DCP, which is a sublcass of the class of convex functions. Now one can ask a natural question whether the functions $f_n(z)$ belong to the class DCP instead of just to the class of convex functions. We shall prove that in general the function $f_n(z)$ does not belong to the class DCP. Already for the special case x = 1 in (4), we get the following result.

Theorem 1 For $n \in N$, let

$$f_{n}(z) = \sum_{k=1}^{n} {\binom{n}{k} \binom{2k}{k} V_{k}(z), \ z \in E}$$

Then $f_n \in DCP$ for $n \le 6$ and $\notin DCP$ for n = 7.

3. PROOF OF THE MAIN RESULT

Proof: Just like in the previous sections, put

$$w_k(t) := \operatorname{Re} V_k(e^{it}) = -\frac{1}{2} + \frac{2^{k-1}(k!)^2}{(2k)!}(1 + \cos(t))^k$$

and let

$$\begin{aligned} u_{n}(t) &:= \operatorname{Re} \, f_{n} \, (e^{tt}) &= \sum_{k=1}^{n} {\binom{n}{k} \binom{2k}{k}} \, w_{k} \, (t) \\ &= \sum_{k=1}^{n} {\binom{n}{k} \binom{2k}{k}} \left(-\frac{1}{2} + \frac{2^{k-1} \, (k!)^{2}}{(2k)!} \left(1 + \cos(t) \right)^{k} \right) \\ &= \sum_{k=1}^{n} \left(-\frac{n! \, (2k)!}{2(n-k)! \, (k!)^{3}} + \frac{2^{k-1} \, n!}{k! \, (n-k)!} \left(1 + \cos(t) \right)^{k} \right) \end{aligned}$$

Then, from lemma 1, $f_n \in DCP$ if and only if

 $v_n(t) := u''_n(t) u''_n(t) - u_n''(t) u_n'(t) \ge 0$ for $0 \le t \le 2n$. After simplification (using Mathematica 3.0), we get:

CHINTA MANI POKHAREL

 $v_1(t) = 1,$ $v_2(t) = 52 + 54 \cos(t) - 6 \cos(3t)$

 $v_3(t) = 9 (3 + 2 \cos(t))^2 (15 + 15 \cos(t) - 2 \cos(2t) - 3 \cos(3t)),$

25

C

It)

If

20

200

in

00

Fa

-

16

No

and bod

Car Car

-34

iif a

1.44

(5)

- $v_4(t) = 8 (3 + 2 \cos(t))^4 (34 + 33 \cos(t) 8 \cos(2t) 9 \cos(3t)),$
- $v_5(t) = 25 (3 + 2 \cos{(t)})^6 (19 + 18 \cos{(t)} 6 \cos{(2t)} 6 \cos{(3t)}),$
- $v_6(t) = 18 (3 + 2 \cos{(t)})^8 (42 + 39 \cos{(t)} 16 \cos{(2t)} 15 \cos{(3t)}),$
- $v_7(t) = 49 (3 + 2 \cos{(t)})^{10} (23 + 21 \cos{(t)} 10 \cos{(2t)} 9 \cos{(3t)}).$

We shall show one by one that

$$u_n(t) \ge 0, \ 0 \le t \le 2\pi,$$

for $n \le 6$, while $v_7(t)$ does not satisfy this condition.

The case n = 1 is obvious. For the case n = 2,

 $v_2(t) = 52 + 54 \cos(t) - 6 \cos(3t) = 52 + 72 x - 24 x^3 =: p_2(x)$

where x = cos(t). Therefore $v_2(t) \ge 0$ on $0 \le t \le 2\pi$ if and only if the polynomial $p_2(x) \ge 0$ on $-1 \le x \le 1$. Now for $-1 \le x \le 1$,

$$p_2(x) = 52 + 24x (3 - x^2)$$

$$\geq 52 + 48x$$

$$\geq 4.$$

Therefore (5) holds for the case n = 2.

Now consider the case n = 3. After a simple calculation, we can write

 $v_3(t) = 9(3 + 2\cos(t))^2 p_3(x),$ (6)

where

$$p_3(x) = 17 + 24 x - 4x^2 - 12x^3$$
 and $x = \cos(t)$.

From (6), we see that $v_3(t) \ge 0$ for $0 \le t \le 2\pi$ if and only if $p_3(x) \ge 0$ for $-1 \le x \le 1$. Now

$$p_3(-1) = 1, p_3(1) = 25,$$

while

$$p_3(x_1) \approx 0.871904$$
, $p_3(x_2) \approx 27.7289$

at the critical points

$$x_1 = \frac{1}{9}(-1 - \sqrt{55}) \approx -0.935133, x_2 = \frac{1}{9}(-1 + \sqrt{55}) \approx 0.712911,$$

both of which lie inside the interval [-1, 1]. This shows that

 $p_3(x) \ge p_3(x_1) \ge 0$ for $-1 \le x \le 1$,

and hence $v_3(t) \ge 0$ for $0 \le t \le 2\pi$.

Consider the case n = 4. As in the case of $v_3(t)$, we can write

 $v_4(t) = 8 (3 + 2 \cos(t))^4 p_4(x),$

where

$$p_4(x) = 42 + 60 x - 16 x^2 - 36 x^3$$
 and $x = cos(t)$.

It is clear from (7) that $v_4(t) \ge 0$ on $0 \le t \le 2\pi$ if and only if $p_4(x) \ge 0$ on $-1 \le x \le 1$. If we study the behaviour of the polynomial $p_4(x)$ on [-1, 1], we see that

$$p_4(-1) = 2, p_4(1) = 50$$

and for $x \in (-1, 1)$, $p_4(x)$ has critical points at $x_1 = \frac{1}{27}(-4 - \sqrt{421}) \approx -0.908085 > -1$ and $x_2 = \frac{1}{27}(-4 + \sqrt{421}) \approx 0.611788 < 1$, and $p_4(x)$ takes positive values at both of these points. In fact, $p_4(x_1) \approx 1.27865$ and $p_4(x_2) \approx 64.4753$. From this we conclude that $p_4(x) \ge 0$ on $-1 \le x \le 1$, and hence $v_4(t) \ge 0$ on $0 \le t \le 2\pi$. For the case n = 5, we can write

$$v_5(t) = 25 (3 + 2 \cos(t))^6 p_5(x),$$

where

$$p_5(x) = 25 + 36 x - 12 x^2 - 24 x^3$$
 and $x = \cos(t)$.

We see here also that $v_5(t) \ge 0$ on $0 \le t \le 2\pi$ if and only if $p_5(x) \ge 0$ on $-1 \le x \le 1$. Now

$$p_5(-1) = 1$$
, $p_5(1) = 25$

and for $x \in (-1, 1)$, $p_5(x)$ has critical points: one at $x_1 = \frac{1}{6}(-4 - \sqrt{19}) \approx -0.89315 > -1$ and the other at $x_2 = \frac{1}{6}(-1 + \sqrt{19}) \approx 0.559816 < 1$. $p_5(x)$ takes positive values at both of these points; in fact, $p_5(x_1) \approx 0.373538$ and $p_5(x_2) \approx 37.182$. From this we conclude that $p_5(x) \ge 0$ on $-1 \le x \le 1$, and hence $v_5(t) \ge 0$ on $0 \le t \le 2\pi$. Case n = 6. As in the previous case, let us write

$$v_6(t) = 18 (3 + 2 \cos(t))^8 p_6(x),$$
 (9)

where

 $p_6(x) = 58 + 84 x - 32 x^2 - 60 x^3$ and $x = \cos(t)$.

If we study the behaviour of $p_6(x)$ on [-1, 1], we see that $p_6(-1) = 2$, $p_6(1) = 50$. And for $x \in (-1, 1)$, $p_6(x)$ has critical points at $x_1 = \frac{1}{45}(-8 - \sqrt{1009}) \approx -0.883661$ and $x_2 = \frac{1}{45}(-8 + \sqrt{1009}) \approx 0.528106$, and $p_6(x)$ takes positive values at both of

(7)

(8)

mial

(6)

 $\leq 1.$

1)),

1)).

(5)

these points. In fact, $p_6~(x_1)\approx 0.18582$ and $p_6~(x_2)\approx 84.599$. We thus see that $p_6~(x)\geq 0$ on $-1\leq x\leq 1$, and hence, from (9), we conclude that $v_6(t)\geq 0$ on $0\leq t\leq 2\pi$. In this way we have shown that the functions $v_n(t)\geq 0$ on $0\leq t\leq 2\pi$ for n=1,...,6, and hence the functions

$$f_{n}(z) = \sum_{k=1}^{n} {\binom{n}{k}} {\binom{2k}{k}} V_{k}(z)$$

are in the class DCP for $n \in N$, $n \le 6$.

Moving on to the case n = 7, we now show that the condition $v_7(t) \ge 0$ for $0 \le t \le 2\pi$ does not hold. After a simple calculation, we can write

 $v_7(t) = 49 (3 + 2 \cos(t))^{10} p_7(x)$ (10)

5.

6.

7.

Β.

9.

28

St

00

- 1

St.

Mo

St.

and

where

$$p_7(x) = 33 + 48 x - 20 x^2 - 36 x^3$$
 and $x = \cos(t)$.

Here also, we see that $v_7(t) \ge 0$ on $0 \le t \le 2\pi$ if and only if $p_7(x) \ge 0$ on $-1 \le x \le 1$. But for this case, we have

and

$$p_7(-1) = 1, p_7(1) = 25$$

$$p_7(x_1) \approx -0.19564, p_7(x_2) \approx 47.5034$$

at the critical points $x_1 = \frac{1}{27} (-5 - \sqrt{349}) \approx -0.877094 > -1$ and $x_2 = \frac{1}{27} (-5 + \sqrt{349}) \approx 0.506724$, both of which lie inside the closed interval [-1, 1]. This shows that $p_7(x)$ takes also negative values in $-1 \le x \le 1$ and consequently $v_7(t)$ takes also negative values in $0 \le t \le 2\pi$. Hence f_n can not belong to the class DCP for n = 7. This completes the proof of this case and of the theorem as well.

REFERENCES

- S.D. Bernardi, (1961). Convex, starlike, and level curves, Duke Math. J. 28, 57-72.
- J.E. Brown, (1987). Level sets for functions convex inone directions, Proc. Amer. Math. Soc. 100, 442–446.
- W. Hengratner and G. Schober, (1973). A remarks on level curves for domains convex in one directions, Applicable Anal. 3, 101 – 106.

DCP PROPERTY OF A CERTAIN

that	4. W. Hengratner and G. Schober, (1970). On schlicht mappings to domains convex in one directions, Comment. Math. Helv. 45, 303–314.
	5. A.W. Goodman and E.B. Saff, (1979). On univalent functions convex in one direction Proc. Amer. Math. Soc. 73, 183–187.
	6. G. Polya and I. J. Schoenberg, (1958). Remarks on the de la Vallee Poussian mean and convex conformal maps of the circle, Pacific J. Math. 8,
	295–333.
	7. St. Ruscheweyh and L. Salinas, (1989). On the preservation of direction
<u>≤</u> 2π	– 73.
(10)	 St. Ruscheweyh and L. Salinas, (1992). On the preservation of periodic Monotonicity, Constr. Approx. 8, 128 – 140.
	9. St. Ruscheweyh and K. J. Wirths, (1976). Riemann mapping theorem for n- analytic functions, Math. Z. 149, 287–297.
≤1.	
$=\frac{1}{27}$	
This	
¥7 (t)	
DCP	

J. 28,

Proc.

es for

[27]