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Abstract: We shall established the DCP Property of certain Combinations of de la
Vallée Poussin Kernels for some particular cases.

1. INTRODUCTION

Let 4 denote the set of analytic functions in D, /' * g the Hadamard product or
convolution between two members of 4. A domain Q < C is said to be convex in
the direction e, $ € R, if and only if for every a € C the set.
Qnfa+te”:te R}
is either connected or empty. Accordingly we define the class () = 4. b € N,
of the functions convex in the direction ¢'® as
A(¢) = {f € 4 : funivalent and D) convex in the direction ").
Finally, a function g € 4 is called Direction-Convexiry-Preserving (g € DCP) if
and only if
g*fe & (f)forall fe A(p) and all ¢ € R.
Functions in DCP have many other intriguing convolution-type properties, for
instance the preservation of convex harmonic functions in D, and of Jordan curves
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in the plane with convex interior domain; we refer to [7], [8] for more details.
There one also finds a complete description of the members of DCP, namely

g € DCP <= g(z) +itzg' (2) € & (5) forall t & K.

Further it is known, that DCP functions are convex univalent.
The following criterion for membership in DCP is a slight variant of [7, Theorem 4].

Lemma 1 Let g be analytic in D, convex univalent and let u(f) := Reg ("), t € K.
Then
g € DCP if and only if
oy = (u" (t))2 —u'(t)u" (t)>0,te R
The classical definition of the de la Vallée Poussin Kernel of ordern € N is

2" (!’
W (): =gy (1 + cos (O 0

_L 2 (zn)l/(l
B Zn) 2 n+k/% -

k=—un.

But here we are interested in the analytic version of the de la Vallée Poussin
Kernel

bty if12n
V,.(z)-.-%- > (n-*-k) z,z¢eC. (2)
() k=1
Note that
2Re Vo (") =wn(t)—1,n € N. (3)
2. MAIN RESULTS

In this section, we again come back to the analytic version of the classical de la
Vallee Poussin Kernels. Let us recall that the function

) O e AR

Vn(z)=$ > (n'_‘_k)z",zED,
( n ) J

is the de la Vallee Poussin kernel of order n.
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In [9], St. Ruscheweyh and J. K. Wirths proved that for 0 < x < o0 and for n €N,
the function

n
@)= X (ﬁ (Zlic ) Vi (2),z € D, 4)
k=1

is convex. When they proved this, the class DCP was not even defined. Later in
1989 [7], St. Ruscheweyh and L. Salinas introduced the class DCP, which is a
sublcass of the class of convex functions. Now one can ask a natural question
whether the functions f, (z) belong to the class DCP instead of just to the class of
convex functions. We shall prove that in general the function f, (z) does not
belong to the class DCP. Already for the special case x = 1 in (4), we get the
following result.

Theorem 1 Forn € N. let

£ (z)=k§1 (k) Gf) Vk(2), ze D

Then f, & DCP forn <6 and & DCP forn="7.

3. PROOF OF THE MAIN RESULT

Proof: Just like in the previous sections, put
i el 2
wi (1) :=Re Vi (") = - P #k)_'L (1 + cos(t))
and let

up(t) =Re f (") = .le: Gﬂ G:() wi (1)

Z (k) (21() (—2 k;k),' 2 1+ coS(t))k)

2k)! 2%t
=kz ( 2(mn fc)' )(k'f K@l (”"“(‘”)

Then, from lemma 1, f; € DCP if and only if
Va(t) 1 = u"s(t) u"a(t) — u" (t) un'(t) > 0 for 0 <t <2n.
After simplification (using Mathematica 3.0), we get:
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i) = L,
va(t) = 52+ 54 cos (t)— 6 cos (3t)
vs(t) = 9(3+2cos (1)) (15+ 15 cos (t) — 2 cos (2t) — 3 cos (31)),
va(t) = 8(3+2cos (1) (34 + 33 cos (t) — 8 cos (2t) — 9 cos (3)),
vs(t) = 25(3 +2cos (t))_‘6 (19 + 18 cos (t) — 6 cos (2t) — 6 cos (3t)),
ve(t) = 18 (3 +2 cos (1) (42 + 39 cos (1) - 16 cos (2t) — 15 cos (31)).
vi(t) = 49 (3 +2 cos (1)) (23 + 21 cos (t) — 10 cos (2t) — 9 cos (3t)).
We shall show one by one that
uy(t) 20,0t <2m, (5)
for n < 6, while vs(t) does not satisfy this condition.
The case n = 1 is obvious. For the case n = 2,
va(t) = 52 + 54 cos () — 6 cos (3t) = 52 + 72 x - 24 X’ =: pa(X)
where x = cos(t). Therefore va(t) > 0 on 0 < t < 2= if and only if the polynomial
pax)>00on-1<x<1.Nowfor-1 <x<1,
paxX) =52+24x (3 -x%)
> 52 +48x
>4,
Therefore (5) holds for the case n = 2.
Now consider the case n = 3. After a simple calculation, we can write
vs(t) =9(3 +2 cos (1))’ ps (¥): (6)
where
p3(x)=17+24x —4x% = 12x° and x = cos (t).
From (6). we see that v3(t) > 0 for 0 <t <2m if and only if p3(x) 2 0 for-1 <x < 1.
Now
ps (=1)=1p3 (1)=25,
while
pa(x;) = 0.871904. ps(x;) = 27.7289
at the critical points

x| = é (-1 —1[55) ~~0.935133, x2=% (-1 +4/55) = 0.712911,

both of which lie inside the interval [-1, 1]. This shows that
pa(x) 2 ps(x1) > 0 for -1 <x <1,
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and hence v3(t) >0 for0 <t <2m.
Consider the case n = 4. As in the case of vi(t), we can write
va(t) =8 (3 + 2 cos (1)) ps (), (7)
where
pa(x) =42 + 60 x — 16 x* — 36 x’ and x = cos(1)).
It is clear from (7) that v4(t) > 0 on 0 <t < 2w if and only if ps(x) >0 on-1 <x < 1.
If we study the behaviour of the polynomial ps(x) on [-1, 1], we see that
pa(-1) =2, pa(1) = 50,
and for x & (=1, 1), pa(x) has critical points at x; =35 (-4 —/421) = —0.908085 > -1
and x; = 5'7- (—4+ \/E ) = 0.611788 < 1, and pa(x) takes positive values at both of
these points. In fact, pa(x;) = 1.27865 and ps(x;) = 64.4753. From this we
conclude that ps(x) = 0 on -1 <x < 1, and hence v4(f) >0 on 0 <t <27
For the case n = 5, we can write
vs(t) =25 (3 + 2 cos (1))® ps (%), (8)
where
ps(x) =25 + 36 x - 12 x* = 24 x° and x = cos (1).
We see here also that vs(t)> 0 on 0 <t < 2m if and only if ps(x) >0 on-1 <x < 1.
Now
ps(-1)=1, ps(1)=25,
and for x (=1, 1), ps(x) has critical points: one at x; =3 (-4 —/19) ~~0.89315 > -1
snd the other at X = + (~1 +/19) = 0.559816 < 1. ps(x) takes positive values at
both of these points; in fact, ps(x1) = 0.373538 and ps(x2) ~ 37.182. From this we
conclude that ps(x) > 0 on—1 <x < 1, and hence vs(t) >.0.on 0 <t <2m.
Case n= 6. As in the previous case, let us write '
ve(t) = 18 (3 +2 cos (1)° pe (X), 9)
where '
Pe(x) = 58 + 84 x — 32 x* — 60 x* and x = cos (1).
If we study the behaviour of pg(x) on [-1, 1], we see that pg(~1) = 2, ps(1) = 50.
And for x = (=1, 1), ps(x) has critical points at x; = 7 (- 8 —/1009) ~ — 0.883661

snd %2 = 1z (- 8 +/1009) = 0.528106, and ps (x) takes positive values at both of




T IIIEEENRRRRRRRRmm———m,

[26] CHINTA MANI POKHAREL

these points. In fact, ps (x;) ~ 0.18582 and Ps (X2) ~ 84.599. We thus see that <

ps(x)>00on-1<x<1, and hence, from (9), we conclude that ve(t)>0on0 <t <2

In this way we have shown that the functions Va()20on0<t<2nforn=1, ..., 6.
and hence the functions

n
wo- § () we
k=1
are in the class DCP forn e N,n<6.
Moving on to the case n = 7, we now show that the condition v5(t) > 0 for 0 <t < 2x
does not hold. After a simple calculation, we can write
V7 () =49(3 + 2 cos (1) p; (x) (10)
where .
P7(x) =33 +48 x - 20 x* - 36 X’ and x = cos (1),
Here also. we see that v4(t) > 0 on 0 St<2mif and only if p; (x) > 0 on -1 <x<l.
But for this case, we have
pr(-1)=1, p;(1)=25
and
P7 (X1) ~0.19564, p(x2) ~ 47.5034

at the critical points x; = 51.; (=5 - \f349) ~ —0.877094 > ] and x, = 2L7

(-5 + \/?&B) =~ 0.506724, both of which lie inside the closed interval [-1. 1]. This
shows that p; (x) takes also negative values in -1 <x < 1 and consequently vy (1)
takes also negative values in 0 <t < 2. Hence f; can not belong to the class DCP
for n = 7. This completes the proof of this case and of the theorem as well.
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