DCP Property of a Certain Combinations of de la Vallée Poussin Kernels

CHINTA MANI POKHAREL
Nepal Engineering College
G.P.O. Box 10210 Kathmandu, Nepal
email: chintam@nec.edu.np

Abstract: We shall established the DCP Property of certain Combinations of de la Vallée Poussin Kernels for some particular cases.

1. INTRODUCTION

Let \mathcal{A} denote the set of analytic functions in $\mathrm{D}, f^{*} \mathrm{~g}$ the Hadamard product or convolution between two members of \mathcal{A}. A domain $\Omega \subseteq \mathrm{C}$ is said to be convex in the direction $\mathrm{e}^{i \phi}, \phi \in \Re$, if and only if for every $\mathrm{a} \in \mathrm{C}$ the set.

$$
\Omega \cap\left\{\mathrm{a}+\mathrm{te}^{i \phi}: \mathrm{t} \in \mathfrak{R}\right\}
$$

is either connected or empty. Accordingly we define the class $\mathcal{K}(\phi) \subset \mathcal{A}, \phi \in \Re$, of the functions convex in the direction $e^{i \phi}$ as

$$
\mathcal{K}(\phi):=\left\{f \in \mathcal{A}: f \text { univalent and } f(\mathrm{D}) \text { convex in the direction } \mathrm{e}^{i \phi}\right\} .
$$

Finally, a function $g \in \mathcal{A}$ is called Direction-Convexity-Preserving ($g \in D C P$) if and only if

$$
\mathrm{g} * f \in \mathcal{K}(\mathrm{f}) \text { for all } f \in \mathcal{K}(\phi) \text { and all } \phi \in \Re .
$$

Functions in DCP have many other intriguing convolution-type properties, for instance the preservation of convex harmonic functions in D, and of Jordan curves
in the plane with convex interior domain; we refer to [7], [8] for more details. There one also finds a complete description of the members of DCP, namely

$$
g \in D C P \Longleftrightarrow g(z)+i t z g^{\prime}(z) \in \mathcal{K}\left(\frac{\pi}{2}\right) \text { for all } t \in \Re .
$$

Further it is known, that DCP functions are convex univalent.
The following criterion for membership in DCP is a slight variant of [7, Theorem 4].
Lemma 1 Let g be analytic in $\overline{\mathrm{D}}$, convex univalent and let $\mathrm{u}(\mathrm{t}):=\operatorname{Reg}\left(\mathrm{e}^{i t}\right), \mathrm{t} \in \mathfrak{R}$. Then
$\mathrm{g} \in \mathrm{DCP}$ if and only if

$$
\sigma_{u}:=\left(u^{\prime \prime}(t)\right)^{2}-u^{\prime}(t) u^{\prime \prime \prime}(t) \geq 0, t \in \Re
$$

The classical definition of the de la Vallée Poussin Kernel of order $n \in N$ is

$$
\begin{align*}
\mathrm{w}_{\mathrm{n}}(\mathrm{t}): & =\frac{2^{\mathrm{n}}(\mathrm{n}!)^{2}}{(2 \mathrm{n})!}(1+\cos (\mathrm{t}))^{\mathrm{n}} \tag{1}\\
& =\frac{1}{\binom{2 \mathrm{n}}{\mathrm{n}}} \sum_{\mathrm{k}-\mathrm{n}}^{\mathrm{n}}\binom{2 \mathrm{n}}{\mathrm{n}+\mathrm{k}} e^{i k t}
\end{align*}
$$

But here we are interested in the analytic version of the de la Vallée Poussin Kernel

$$
\begin{equation*}
\mathrm{V}_{\mathrm{n}}(\mathrm{z})=\frac{1}{\binom{2 \mathrm{n}}{\mathrm{n}}} \sum_{\mathrm{k}=1}^{\mathrm{n}}\binom{2 \mathrm{n}}{\mathrm{n}+\mathrm{k}} \mathrm{z}^{\mathrm{k}}, \mathrm{z} \in \mathrm{C} . \tag{2}
\end{equation*}
$$

Note that

$$
\begin{equation*}
2 \operatorname{Re} \mathrm{~V}_{\mathrm{n}}\left(\mathrm{e}^{i l}\right)=\mathrm{w}_{\mathrm{n}}(\mathrm{t})-1, \mathrm{n} \in \mathrm{~N} . \tag{3}
\end{equation*}
$$

2. MAIN RESULTS

In this section, we again come back to the analytic version of the classical de la Vallee Poussin Kernels. Let us recall that the function

$$
\mathrm{V}_{\mathrm{n}}(\mathrm{z})=\frac{1}{\binom{2 \mathrm{n}}{\mathrm{n}}} \sum_{\mathrm{k}=1}^{\mathrm{n}}\binom{2 \mathrm{n}}{\mathrm{n}+\mathrm{k}} \mathrm{z}^{\mathrm{k}}, \mathrm{z} \in \mathrm{D}
$$

is the de la Vallee Poussin kernel of order n.

In [9], St. Ruscheweyh and J. K. Wirths proved that for $0<\mathrm{x}<\infty$ and for $\mathrm{n} \in \mathrm{N}$, the function

$$
\begin{equation*}
f_{n}(z)=\sum_{k=1}^{n}\binom{n}{k} x^{k}\binom{2 k}{k} v_{k}(z), z \in D, \tag{4}
\end{equation*}
$$

is convex. When they proved this, the class DCP was not even defined. Later in 1989 [7], St. Ruscheweyh and L. Salinas introduced the class DCP, which is a sublcass of the class of convex functions. Now one can ask a natural question whether the functions $f_{n}(z)$ belong to the class DCP instead of just to the class of convex functions. We shall prove that in general the function $f_{n}(z)$ does not belong to the class DCP. Already for the special case $x=1$ in (4), we get the following result.
Theorem 1 For $n \in N$, let

$$
f_{n}(z)=\sum_{k=1}^{n}\binom{n}{k}\binom{2 k}{k} v_{k}(z), z \in D
$$

Then $\mathrm{f}_{\mathrm{n}} \in \mathrm{DCP}$ for $\mathrm{n} \leq 6$ and $\notin \mathrm{DCP}$ for $\mathrm{n}=7$.

3. PROOF OF THE MAIN RESULT

Proof: Just like in the previous sections, put

$$
w_{k}(t):=\operatorname{Re} V_{k}\left(e^{i t}\right)=-\frac{1}{2}+\frac{2^{k-1}(k!)^{2}}{(2 k)!}(1+\cos (t))^{k}
$$

and let

$$
\begin{aligned}
u_{n}(t):=\operatorname{Re} f_{n}\left(e^{\prime \prime}\right) & =\sum_{k=1}^{n}\binom{n}{k}\binom{2 k}{k} w_{k}(t) \\
& =\sum_{k=1}^{n}\binom{n}{k}\binom{2 k}{k}\left(-\frac{1}{2}+\frac{2^{k-1}(k!)^{2}}{(2 k)!}(1+\cos (t))^{k}\right) \\
& =\sum_{k=1}^{n}\left(-\frac{n!(2 k)!}{2(n-k)!(k!)^{3}}+\frac{2^{k-1} n!}{k!(n-k)!}(1+\cos (t))^{k}\right)
\end{aligned}
$$

Then, from lemma $1, f_{n} \in D C P$ if and only if

$$
v_{n}(t):=u_{n}^{\prime \prime}(t) u_{n}^{\prime \prime}(t)-u_{n}^{\prime \prime \prime}(t) u_{n}^{\prime}(t) \geq 0 \text { for } 0 \leq t \leq 2 n .
$$

After simplification (using Mathematica 3.0), we get:

$$
\begin{aligned}
\mathrm{v}_{1}(\mathrm{t}) & =1, \\
\mathrm{v}_{2}(\mathrm{t}) & =52+54 \cos (\mathrm{t})-6 \cos (3 \mathrm{t}) \\
\mathrm{v}_{3}(\mathrm{t}) & =9(3+2 \cos (t))^{2}(15+15 \cos (t)-2 \cos (2 t)-3 \cos (3 t)), \\
\mathrm{v}_{4}(t) & =8(3+2 \cos (t))^{4}(34+33 \cos (t)-8 \cos (2 t)-9 \cos (3 t)), \\
v_{5}(t) & =25(3+2 \cos (t))^{6}(19+18 \cos (t)-6 \cos (2 t)-6 \cos (3 t)), \\
v_{6}(t) & =18(3+2 \cos (t))^{8}(42+39 \cos (t)-16 \cos (2 t)-15 \cos (3 t)), \\
v_{7}(t) & =49(3+2 \cos (t))^{10}(23+21 \cos (t)-10 \cos (2 t)-9 \cos (3 t)) .
\end{aligned}
$$

We shall show one by one that

$$
\begin{equation*}
u_{n}(t) \geq 0,0 \leq t \leq 2 \pi, \tag{5}
\end{equation*}
$$

for $\mathrm{n} \leq 6$, while $\mathrm{v}_{7}(\mathrm{t})$ does not satisfy this condition.
The case $\mathrm{n}=1$ is obvious. For the case $\mathrm{n}=2$,

$$
v_{2}(t)=52+54 \cos (t)-6 \cos (3 t)=52+72 x-24 x^{3}=: p_{2}(x)
$$

where $x=\cos (t)$. Therefore $v_{2}(t) \geq 0$ on $0 \leq t \leq 2 \pi$ if and only if the polynomial $p_{2}(x) \geq 0$ on $-1 \leq x \leq 1$. Now for $-1 \leq x \leq 1$,

$$
\begin{aligned}
\mathrm{p}_{2}(\mathrm{x}) & =52+24 \mathrm{x}\left(3-\mathrm{x}^{2}\right) \\
& \geq 52+48 \mathrm{x} \\
& \geq 4 .
\end{aligned}
$$

Therefore (5) holds for the case $\mathrm{n}=2$.
Now consider the case $\mathrm{n}=3$. After a simple calculation, we can write

$$
\begin{equation*}
\mathrm{v}_{3}(\mathrm{t})=9(3+2 \cos (\mathrm{t}))^{2} \mathrm{p}_{3}(\mathrm{x}), \tag{6}
\end{equation*}
$$

where

$$
p_{3}(x)=17+24 x-4 x^{2}-12 x^{3} \text { and } x=\cos (t) \text {. }
$$

From (6), we see that $\mathrm{v}_{3}(\mathrm{t}) \geq 0$ for $0 \leq t \leq 2 \pi$ if and only if $\mathrm{p}_{3}(\mathrm{x}) \geq 0$ for $-1 \leq \mathrm{x} \leq 1$. Now

$$
\mathrm{p}_{3}(-1)=1, \mathrm{p}_{3}(1)=25,
$$

while

$$
\mathrm{p}_{3}\left(\mathrm{x}_{1}\right) \approx 0.871904, \quad \mathrm{p}_{3}\left(\mathrm{x}_{2}\right) \approx 27.7289
$$

at the critical points

$$
x_{1}=\frac{1}{9}(-1-\sqrt{55}) \approx-0.935133, x_{2}=\frac{1}{9}(-1+\sqrt{55}) \approx 0.712911 \text {, }
$$

both of which lie inside the interval $[-1,1]$. This shows that

$$
\mathrm{p}_{3}(\mathrm{x}) \geq \mathrm{p}_{3}\left(\mathrm{x}_{1}\right)>0 \text { for }-1 \leq \mathrm{x} \leq 1 \text {, }
$$

and hence $v_{3}(t) \geq 0$ for $0 \leq t \leq 2 \pi$.
Consider the case $n=4$. As in the case of $v_{3}(t)$, we can write

$$
\begin{equation*}
\mathrm{v}_{4}(\mathrm{t})=8(3+2 \cos (\mathrm{t}))^{4} \mathrm{p}_{4}(\mathrm{x}) \tag{7}
\end{equation*}
$$

where

$$
\left.p_{4}(x)=42+60 x-16 x^{2}-36 x^{3} \text { and } x=\cos (t)\right)
$$

It is clear from (7) that $v_{4}(t) \geq 0$ on $0 \leq t \leq 2 \pi$ if and only if $p_{4}(x) \geq 0$ on $-1 \leq x \leq 1$. If we study the behaviour of the polynomial $p_{4}(x)$ on $[-1,1]$, we see that

$$
\mathrm{p}_{4}(-1)=2, \mathrm{p}_{4}(1)=50
$$

and for $x \in(-1,1), p_{4}(x)$ has critical points at $x_{1}=\frac{1}{27}(-4-\sqrt{421}) \approx-0.908085>-1$ and $x_{2}=\frac{1}{27}(-4+\sqrt{421}) \approx 0.611788<1$, and $p_{4}(x)$ takes positive values at both of these points. In fact, $\mathrm{p}_{4}\left(\mathrm{x}_{1}\right) \approx 1.27865$ and $\mathrm{p}_{4}\left(\mathrm{x}_{2}\right) \approx 64.4753$. From this we conclude that $\mathrm{p}_{4}(\mathrm{x}) \geq 0$ on $-1 \leq \mathrm{x} \leq 1$, and hence $\mathrm{v}_{4}(\mathrm{t}) \geq 0$ on $0 \leq \mathrm{t} \leq 2 \pi$.
For the case $\mathrm{n}=5$, we can write

$$
\begin{equation*}
\mathrm{v}_{5}(\mathrm{t})=25(3+2 \cos (\mathrm{t}))^{6} \mathrm{p}_{5}(\mathrm{x}) \tag{8}
\end{equation*}
$$

where

$$
p_{5}(x)=25+36 x-12 x^{2}-24 x^{3} \text { and } x=\cos (t)
$$

We see here also that $\mathrm{v}_{5}(\mathrm{t}) \geq 0$ on $0 \leq \mathrm{t} \leq 2 \pi$ if and only if $\mathrm{p}_{5}(\mathrm{x}) \geq 0$ on $-1 \leq \mathrm{x} \leq 1$. Now

$$
\mathrm{p}_{5}(-1)=1, \quad \mathrm{p}_{5}(1)=25
$$

and for $\mathrm{x} \in(-1,1), \mathrm{p}_{5}(\mathrm{x})$ has critical points: one at $\mathrm{x}_{1}=\frac{1}{6}(-4-\sqrt{19}) \approx-0.89315>-1$ and the other at $\mathrm{x}_{2}=\frac{1}{6}(-1+\sqrt{19}) \approx 0.559816<1$. $\mathrm{p}_{5}(\mathrm{x})$ takes positive values at both of these points; in fact, $p_{5}\left(x_{1}\right) \approx 0.373538$ and $p_{5}\left(x_{2}\right) \approx 37.182$. From this we conclude that $\mathrm{p}_{5}(\mathrm{x}) \geq 0$ on $-1 \leq \mathrm{x} \leq 1$, and hence $\mathrm{v}_{5}(\mathrm{t}) \geq 0$ on $0 \leq \mathrm{t} \leq 2 \pi$.
Case $\mathrm{n}=6$. As in the previous case, let us write

$$
\begin{equation*}
v_{6}(t)=18(3+2 \cos (t))^{8} p_{6}(x) \tag{9}
\end{equation*}
$$

where

$$
p_{6}(x)=58+84 x-32 x^{2}-60 x^{3} \text { and } x=\cos (t)
$$

If we study the behaviour of $p_{6}(x)$ on $[-1,1]$, we see that $p_{6}(-1)=2, p_{6}(1)=50$. And for $x \in(-1,1), p_{6}(x)$ has critical points at $x_{1}=\frac{1}{45}(-8-\sqrt{1009}) \approx-0.883661$ and $\mathrm{x}_{2}=\frac{1}{45}(-8+\sqrt{1009}) \approx 0.528106$, and $\mathrm{p}_{6}(\mathrm{x})$ takes positive values at both of
these points. In fact, $p_{6}\left(x_{1}\right) \approx 0.18582$ and $p_{6}\left(x_{2}\right) \approx 84.599$. We thus see that $p_{6}(x) \geq 0$ on $-1 \leq x \leq 1$, and hence, from (9), we conclude that $v_{6}(t) \geq 0$ on $0 \leq t \leq 2 \pi$. In this way we have shown that the functions $v_{n}(t) \geq 0$ on $0 \leq t \leq 2 \pi$ for $n=1, \ldots, 6$, and hence the functions

$$
\mathrm{f}_{\mathrm{n}}(\mathrm{z})=\sum_{\mathrm{k}=1}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{k}}\binom{2 \mathrm{k}}{\mathrm{k}} \mathrm{~V}_{\mathrm{k}}(\mathrm{z})
$$

are in the class DCP for $\mathrm{n} \in \mathrm{N}, \mathrm{n} \leq 6$.
Moving on to the case $n=7$, we now show that the condition $v_{7}(t) \geq 0$ for $0 \leq t \leq 2 \pi$ does not hold. After a simple calculation, we can write

$$
\begin{equation*}
v_{7}(t)=49(3+2 \cos (t))^{10} p_{7}(x) \tag{10}
\end{equation*}
$$

where

$$
p_{7}(x)=33+48 x-20 x^{2}-36 x^{3} \text { and } x=\cos (t)
$$

Here also, we see that $v_{7}(t) \geq 0$ on $0 \leq t \leq 2 \pi$ if and only if $p_{7}(x) \geq 0$ on $-1 \leq x \leq 1$. But for this case, we have

$$
\mathrm{p}_{7}(-1)=1, \quad \mathrm{p}_{7}(1)=25
$$

and

$$
\mathrm{p}_{7}\left(\mathrm{x}_{1}\right) \approx-0.19564, \mathrm{p}_{7}\left(\mathrm{x}_{2}\right) \approx 47.5034
$$

at the critical points $x_{1}=\frac{1}{27}(-5-\sqrt{349}) \approx-0.877094>-1$ and $x_{2}=\frac{1}{27}$ $(-5+\sqrt{349}) \approx 0.506724$, both of which lie inside the closed interval $[-1,1]$. This shows that $\mathrm{p}_{7}(\mathrm{x})$ takes also negative values in $-1 \leq \mathrm{x} \leq 1$ and consequently $\mathrm{v}_{7}(\mathrm{t})$ takes also negative values in $0 \leq t \leq 2 \pi$. Hence f_{n} can not belong to the class DCP for $n=7$. This completes the proof of this case and of the theorem as well.

REFERENCES

1. S.D. Bernardi, (1961). Convex, starlike, and level curves, Duke Math. J. 28, 57-72.
2. J.E. Brown, (1987). Level sets for functions convex inone directions, Proc. Amer. Math. Soc. 100, 442-446.
3. W. Hengratner and G. Schober, (1973). A remarks on level curves for domains convex in one directions, Applicable Anal. 3, 101-106.
$=\frac{1}{27}$
This $\mathrm{v}_{7}(\mathrm{t})$ DCP
J. 28 ,

Proc.
4. W. Hengratner and G. Schober, (1970). On schlicht mappings to domains convex in one directions, Comment. Math. Helv. 45, 303-314.
5. A.W. Goodman and E.B. Saff, (1979). On univalent functions convex in one direction, Proc. Amer. Math. Soc. 73, 183-187.
6. G. Polya and I. J. Schoenberg, (1958). Remarks on the de la Vallee Poussian mean and convex conformal maps of the circle, Pacific J. Math. 8, 295-333.
7. St. Ruscheweyh and L. Salinas, (1989). On the preservation of direction convexity and the Goodman - Saff conjecture, Ann. Acad. Sci. Fenn. 14, 63 - 73.
8. St. Ruscheweyh and L. Salinas, (1992). On the preservation of periodic Monotonicity, Constr. Approx. 8, 128-140.
9. St. Ruscheweyh and K. J. Wirths, (1976). Riemann mapping theorem for n analytic functions, Math. Z. 149, 287-297.

