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.{bstract: We shall established the DCP Property of certain Combinations of de la
Vallde Poussin Kernels for some particular cases.

l. INTRODUCTION

-er A denote the set of analytic functions in D, / 
* g the Hadamard product or

;onvolution between two members of 4. A domain Q s C is said to be convex in

:he directiofl € 'Q ,0 e fr, if and only if for every a e C the set.

O n { a + t e i d : t e f r }

rs either connected or empty. Accordingly we define the class ?<(D cl, $ e 11,

.-rithe functions convex in the direction eid as

,<(fi):: V e ll:/univalent andfiD) convex in the direction e'l1.

Finalll'. a function g e A is called Direction-Convexirl'-Presen,ing (g e DCp) if
rnJ onlf if

g * 
"f e ?< (f) for allle ,<(il and all 0 e fr.

i::nctions in DCP have many other intriguing convolution-type properties, for
.*-<iance the preservation of convex harmonic functions in D, and of Jordan curves

,'{rrye
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in the plane rwith convex interior dornain; we refer to Fl, {81 for more details.

There one also finds a complete description of the rnembers of DCP, namely

g e iDrCP 'e g(z) + dn4'(z) 
" 

X (T) for all t e E.

Further it is ihosm. {tttdt DCP fir.*d*ti a$s @llYeK llnivalenl

The following criterion for rnenrbmhip in DCP is a sligts variant of [7, Theorem 4].

Lemma I Let g be analytic in D, convex univalent and let u(t) :: Reg (e"), t e fr.

Then

g e DCP if and only if

ou :: (u" C))'- u'(t) u"'(t) > 0, t e fr

The classical definition of the de la Vall6e Poussin Kernel of order n e N is

wn (t) , =%#(l + cos (t))"

1  n  / r * \r \. | 
/-Lt 

l- ikt
( Z n )  , t  \ n + k / '
! n i K--il_

But here we zlre interested in the analytic version of the de la Vall6e Poussin

Kernel

V"(z):6 
-i, 

("?J * ,zec. (2)

( 1 )

In
*x

Prr

rr-|:

- h t

rb

'f

Note that

2Re Vn (."): wn(t) - 1, n e N.

2. MAIN RESULTS

In this section, we again come back to the analytic version

Vallee Poussin Kernels. Let us recall that the function

r  n  / ' l - \I  s -  
I ^ ' : r - l z k , z e D ,Yn\z): 

An\ L \n r- K/

I n J  k =  I

is the de la Vallee Poussin kernel of order n.

(3)

of the classical de la
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In [9], St. Ruscheweyh and J. K. Wirths proved that for 0 < x < o and for n eN,
the function

'fs3l

rn(z) = 
_1, 

(l) ,.! (T) v* (4, z e D, (4)

is convex. When they proved this, the class DCP was not even defined. Later in
1989 [7], St. Ruscheweyh and L. Salinas introduced the class DCP, which is a
sublcass of the class of convex functions. Now one can ask a natural question
whether the functions fn (z) belong to the class DCP instead ofjust to the class of
convex functions. S/e shatl prove that in general the function fn (z) does not
belong to the class DCP. Already for the special case x = I in (4), we get the
following result.

TheoremL ForneN. le t

rn (z) = 
-i, 

(il (t5 u- (z), z' e D

Then fn e DCP for n < 6 and e DCP for n = 7.

3. PROOF OF THE MAIN RESULT

Proof: Just like in the previous sections, put

wr (t) := Re vr (e') = -l* zk-l'Gtt'z (1 + cos(t))k
2 '  ( 2 k ) !  \ r  '  v

and let

un(t) := Re fn (e"; = wr, (t)

(-;.w(r+cos(t))f

.ffi(r+cos(t))f

Then, from lemma l, fn e DCP if and only if

vn(t) : = u"n(t) u"n(t) &,ttt (t) nn'(t) I0 for 0 S t < 2n.

After simplification (using Mathematica 3.0), we get:

_i, ft) ('f)

_i, (il) (T)
S ( n! (2k)!= 

oll l. 2(": tx 1t'9r
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.y(t) -,-= l,

v lO = 52+54cos(t)-6cos(3t) ;

vr(t)  = 9 (3 *2cost#ttS+ 15 cos (t)-2cos(2t)-3 cos(3t)),

v+(t) =' 8'(3 +'2cos (0)4 (34+ 33 cos (t)- 8 cos (2t)-9 cos (3t)),

vsft) = fi (3 +?cos ft)61te+ 18 cos(t)-6 cos(2t)-6 cos (3t)),

ve(t) = 18 (3 + 29os (0{1+2 + 3gcos (t) - 16 cos (2t) -15 cos (3t)),

vz(t)  = 49 (3+zcqs(t))t0 (23+2l cos(t)-  l0cos (2r)-9cos(3t)).

\Me shall show one by one that

u r ( t ) 2 0 , 0 < t 1 2 n ,

for n S 6,'wtrile'vzft) does not satisff this condition.

The case n = 1 is obvious. For the case R = 2,

vz(t) = 52 + 54 cos (t),- 6 cos (3t) = 52 +72x-24x3 =: pz(x)

(s)

where x = cos(t). Therefore vz(t) > 0 on 0 St<2n if and only if the polynomial

pz(x) Z 0 on-1 (  x (  l .  Now for-1 (x (  1,

pz(x )  =52+24xQ-* )

> 52+ 48x
'  > 4 .

Therefore (5) holds for the case n= 2.

Now consider the case n = 3. After a sinple calculation, we can write

vr(t) = 9(3 + 2 cos (t))2 pr (x),

where

pl(x) = 17 + 24 x - 4x2 - l2x3 and x = cos (t).

From (6), we see that vl(t) i 0 for 0 <t<2n if and only if pr(x) >- 0 for-1 < x < 1.

Now

pr  ( -1 ) :  1 ,  p3  ( l )=25,

while

pr(xr) :v 0.871904, p:(xz) x 27.7289

at the critical points

*,  =i(-t  - \F)=-0.93513 3,xz: l t- t  *r,B)- 0.7r2srr,

bcith.of which lie inside the interval [-1,]1]' This shows that 
1

I

a

d

l i

f'

I

d

t
C

R

{

(6)
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and hence vl(t) > 0 for 0 St<2n.

Consider the case n = 4. As in the case of v3(t), we can write

vc(t) = 8 (3 + 2 cos (t))a p+ (x),

'*'here

p+(x) = 42 + 60x - 16 * - l1x3 and x : cos(t)).

It is clear from (7) that v4(t) > 0 on 0 < t < 2n if andonly ifp+(x) > 0 on -l < x < l.

If u'e study the behaviour of the polynomial P+(x) on [-1, 1], we see that

p+(-t) = 2, P4(1) = 50,

and forx e (-1, 1), p+(x) has critical points atxl = 
*ru-\[421)--0.908085 

>-1

ard s1 : * (u + f[2Tl r 0.611788 < l, and pa(x) takes positive values at both of

::ese points. In fact, p4(xr) x 1.27865 and pr(xz) x 64.4753. From this we

:..nclude that p+(x) > 0 on-l < x < 1, and hence vq(t) > 0 on 0 <t <2n.

i: ' : ' ihe case n: 5. we can write

vs(t): 25 (3 + 2 cos (t))6 ps (x),

i\  hL're

ps(x) = 25 + 36 x - 12 *2 - 24x3 and x = cos (t).

rJje see here also that v5(t) > 0 on 0 < t < 2n if andonly ifp5(x) > 0 on -1 < x < 1.

\orr'

ps  ( - l )  =  1 ,  P5 (1 ) :25 ,

-l for x e (-1, l), ps(x) has critical points: one at *, =t (4 -\[) ^v -0.89315 > -l

:::i the other at *r: * (-1 'F ̂ Ip) - 0'559816 < l'ps(x) takes positive values at

r-,ih of these points; in fact, ps(xr) = 0.373538 and p5(x2) x 37.182. From this we

- .rclude that p5(x) > 0 on -1 < x < l, and hence v5(t) >,0,orr.^ 0 <t <2n.

,-:-;e n : 6. As in the previous case, let us write

v6(t) = 18 (3 + 2 cos (t))8 po (x),

t2sl

(7)

(8)

(e)
. \ :3 re

po(x) : 58 + 84 x -32x2 - 60 x3 and x = cos (t).

.: rre srud1,the behaviour of p6(x) on [-1, 1], we see that p6(-l):2, p6(1):50'

:.:: for x e (-1, 1), pe(x) has critical points at x1 = 
* t- * -.@tl = - 0.883661

:--..1 \1 = 
.. (- S + {f OOe) = 0.528106, and pe (x) takes positive values at both of
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these points. In fact, po (xr) r 0-1g5g2 and p6 (xz) - g4.5gg. we thus see that
po(x) :0on-1 (x  (  1 ,  andhence,  f rom(9) ,weconcludethatv6( t )> 0 on 01t<2n.
In this way we have shown that the functions vn(t) > 0 on 0 < t < 2nfor n : r, ..., 6.
and hence the functions

qr'):utr 0 (tf) vr(z)
are in the class DCp for n e N, n < 6.

Movingonto the casen :T,wenowshowthatthe condit ion vz(t) > 0 for0 <t<2n
does not hold. After a simple calculation. we can write

vz (t) = 49 (3 + 2 cos (t))ro pz (x) ( r0)

pz(x) = 33 + 4g x _ 20 x2 _ 36 x3 and x = cos (t).
Here also, we see that v7(t) > 0 on 0 <t < 2nif andonly if p7 (x) u 0 on -l <x < l.
But for this case, we have

pz ( - l )  :  l ,  pz  (1 )  =  25
and

pz (xr) e, - 0.19564, pz(x:) x 47.5034
at the critical points *, : 

* (_5 _ rF?Dl x _0.g770g4 > _l and xz : $
(-5 + r@l x 0.506724, both of which lie inside the closed interval [-1, l]. This
shows that p7 (x) takes also negative values in -l < x < l and consequentry v7 (t)
takes also negative values in 0 < t <2n. Hence fn can not berong to the crass DCp
for n = 7. This completes the proof of this case and of the theorem as well.

l .
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