sis of JIT

ize the ization matical

liscrete

-model

The Nepali Math. Sc. Report Vol. 29, No. 1 & 2, 2009

Generalized Fixed Point Theorem in Fuzzy Metric Space

KANHAIYA JHA

Department of Mathematical Sciences, School of Science, Kathmandu University, P. O. Box No. 6250, Kathmandu, Nepal. E-mail: jhaknh@yahoo.co.in; jhakan@ku.edu.np

Abstract: The main objective of the present paper is to establish a common fixed point theorem for pair of self fuzzy mappings in a fuzzy metric space which generalizes and improves various known results.

AMS Subject Classification: 47 H 10.

Key Words: Fuzzy metric space, Compatible mappings, R-weakly commuting mappings, Reciprocal continuity.

Key Words: Fourier transform, Hilbert Schmidt norm, kernel function.

1. INTRODUCTION

The concept of fuzzy sets was initiated by Zadeh [14] in 1965. After that, a lot of works have been done regarding fuzzy sets and applications. Deng[3], Erceg [4], Kalva and Seikkala [7] introduced the concepts of fuzzy metric spaces in different ways. In 1975, Kramosil and Michalek [8] introduced the fuzzy metric space by generalizing the concept of probabilistic metric space to fuzzy situation. Grabiec [6] proved the contraction principle in the setting of the fuzzy metric space introduced by Kramosil and Michalek [8]. Grabiec's result was further

generalized by Subrahmanyam [12] for a pair of commuting mappings. Since then, a substantial literature has been developed on this topic. Also, George and Veermani [5] modified the notion of fuzzy metric spaces with the help of continuous t-norm, by generalizing the concept of probabilistic metric space to fuzzy situation. In 1999, Vasuki [13] introduced the concept of R-weak commutativity of mappings in fuzzy metric space and Pan[9] introduced the notion of reciprocal continuity of mappings in metric space and proved some common fixed point theorems. Balasubramaniam et. al. [1] proved a fixed point theorem, which generalizes a result of Pant [9] for fuzzy mappings in fuzzy metric space.

Def

Cau

5422

0001

Defi

200 200

Defit

Comp

anti-

Defin

ALC: CO

Series and

Defini

Defini

HT Call

2005 (>-

Definit

EL M.

R. such !

Definition

CR. M. .

2 3 205

OL M. *

Carton St.

(marine and

Name and

States of the local division of the local di

Pant and Jha [10] proved a fixed point theorem that gives an analogue of the results by Balasubramaniam et. al. [1] by obtaining a connection between the continuity and reciprocal continuity for four mappings in fuzzy metric space. Recently, Chugh and Kumar [2] proved a common fixed point theorem for four mappings in fuzzy metric space generalizing the result of Vasuki [13]. The present paper is aimed to prove a fixed point theorem assuming the reciprocal continuity of fuzzy mappings in fuzzy metric space that generalizes the results of Chugh and Kuamr [2], Vasuki [13] and improves various other similar results of fixed points. We also give an example to illustrate our main theorem.

We have used the following notions:

Definition 1.1 ([13]) Let X be any set. A fuzzy set A in X is a function with domain X and values in [0, 1].

Definition 1.2 ([11]) A binary operation $* : [0, 1] \times [0, 1] \rightarrow [0, 1]$ is called a continuous t-norms if, ([0, 1], *) is an abelian topological monoid with unit 1 such that a * b \leq c * d whenever a \leq c and b \leq d, for all a, b, c, d in [0, 1].

Examples of t-norms are a * b = ab, $a * b = min \{a, b\}$.

Definition 1.3 ([8]) The triplet (X, M, *) is called a fuzzy metric space (shortly, a FM-space) if, X is an arbitrary set, * is a continuous t-norm and M is a fuzzy et on $X^2 \times [0, \infty)$ satisfying he following conditions: for all x, y, z in X, s, t > 0,

- (i) M(x, y, 0) = 0, M(x, y, t) > 0;
- (ii) M(x, y, t) = 1 for all t > 0 if and only if x = y,
- (iii) M(x, y, t) = M(y, x, t),
- (iv) $M(x, y, t) * M(y, z, s) \le M(x, z, t+s),$
- (v) $M(x, y, \cdot) : [0, \infty) \to [0, 1]$ is left continuous for all $x, y \in X$ and s, t > 0,
- (vi) $\lim_{t\to\infty} M(x, y, t) = 1$, for all $x, y \in X$.

[70]

Definition 1.4 ([6]) A sequence $\{x_n\}$ is a fuzzy metric space (X, M, *) is called Cauchy sequence if, $\lim_{n\to\infty} M(x_{n+p}, x_n, t) = 1$ for every t > 0 and for each p > 0. A fuzzy metric space (X, M, *) is complete if, every Cauchy sequence in X converges in X.

Definition 1.5 ([6]) A sequence $\{x_n\}$ in a fuzzy metric space (X, M, *) is said to be convergent to x in X if, $\lim_{n\to\infty} M(x_n, x, t) = 1$ for each t > 0.

Definition 1.6 ([9]) Two self mappings A and S of a metric space (X, d) are called compatible if, $\lim_{n\to\infty} d(Asx_n, SAx_n) = 0$ whenever $\{x_n\}$ is a sequence such that $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Sx_n = t$ for some t in X.

Definition 1.7 ([1]) Two self mappings A and S of a fuzzy metric space (X, M, *) are called compatible if, $\lim_{n\to\infty} M(ASx_n, SAx_n, t) = 1$ whenever $\{x_n\}$ is a sequence such that $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Sx_n = p$ for some p in X.

Definition 1.8 ([9]) Two self mappings A and S of a metric space (X, d) are called R-weekly commuting at a point x in X if, $d(ASx, SAx) \leq Rd(Ax, Sx)$, for R > 0.

Definition 1.9 ([1]) Two self mappings A and S of a fuzzy metric space (X, M, *) are called weekly commutating if, $M(ASx, SAx, t) \ge A(Ax, Sx, t)$ for each $x \in X$ and $t \ge 0$.

Definition 1.10 ([1]) Two self mappings A and S of a fuzzy metric space (X, M, *) are called R-weekly commuting provided there exists some real number R such that $M(ASx, SAx, t) \ge M(Ax, Sx, t/R)$ form some $x \in X$ and $t \ge 0$.

Definition 1.11 ([1]) Two self mappings A and S of a fuzzy metric space (X, M, *) are called pointwise R-weakly commuting on X if, given x in (X, M, *), there exists R > 0 such that $M(ASx, SAx, t) \ge M(Ax, Sx, t/R)$.

It is noted that R-weakly commutativity in fuzzy metric space implies weak commutativity only when $R \le 1$ (Chugh and Kumar [2]).

Definition 1.12 ([1]) Two self mappings A and S of a fuzzy metric space (X, M, *) are said to be reciprocally continuous if, $\lim_{n\to\infty} AS_n = Ap$ and $\lim_{n\to\infty} SAx_n = Sp$ whenever $\{x_n\}$ is a sequence such that $\lim_{n\to\infty} Sx_n = p$ and $\lim_{n\to\infty} Ax_n = p$ for some p in X.

Note that in the metric setting if A and S are both continuous then they are obviously reciprocal continuous. But the converse need not be true (Pant [9]).

Since rge and belp of pace to R-weak ced the d some ed point metric

of the space. for four 3]. The ciprocal sults of sults of

called a

hortly, a fuzzy et 0,

KANHAIYA JHA

2. MAIN RESULTS

Theorem 2.1 Let (A, S) and (B, T) be pointwise R-weakly commuting pairs of self mappings of complete fuzzy metric space (X, M, *) such that

(i) $AX \subseteq TX, BX \subseteq SX,$

(ii) $M(Ax, By, t) \ge r (M(Sx, Ty, t)),$

for all x, $y \in X$, where $r : [0, 1] \rightarrow [0, 1]$ is continuous function such that r(t) > t for each 0 < t < 1. If the pair (A, S) or (B, T) is compatible pair of reciprocally continuous mappings, then A, B, S and T have a unique common fixed point.

Proof. Let x_0 be any point in X. We define sequences $\{x_n\}$ and $\{y_n\}$ in X given by the rule

 $y_{2n} = Ax_{2n} = Tx_{2n+1}$ and $y_{2n+1} = Bx_{2n+1} = Sx_{2n+2}$, for n = 0, 1, 2, 3, (1) This can be done by virtue of (i). Then, using (ii), we get

$$\begin{split} M(y_{2n},\,y_{2n+1},\,t) &= M(Ax_{2n},\,Bx_{2n+1},\,t) \\ &\geq r(M(Sx_{2n},\,Tx_{2n+1},\,t) = r(M(y_{2n-1},\,y_{2n},\,t)) \\ &> M(y_{2n-1},\,y_{2n},\,t), \end{split}$$

since r(t) > t for 0 < t < 1. Similarly, we have $M(y_{2n+1}, y_{2n+2}, t) > M(y_{2n}, y_{2n+1}, t)$. So, $\{M(y_{2n}, y_{2n+1}, t)\}$, for $n \ge 0$, is an increasing sequence of positive real numbers in [0, 1] and therefore, tends to a limit $\alpha \le 1$. We claim that $\alpha = 1$. For this, if $\alpha < 1$, then on letting $n \rightarrow \infty$ in relation (2), we get $\alpha \ge r(\alpha) > \alpha$, a contradiction. Hence, we get $\alpha = 1$. Thus, for every $n \in N$,

 $M(y_n, y_{n+1}, t) > M(y_{n-1}, y_n, t) \text{ and } M(y_n, y_{n+1}, t) \rightarrow 1 \text{ as } n \rightarrow \infty, \text{ for } t > 0.$ (3) Now, for any positive integer p, we get

 $\begin{array}{ll} M(y_n,\,y_{n+p},\,t) &\geq M(y_n,\,y_{n+1},\,t/p) \, * \, M(y_{n+1},\,y_{n+2},\,t/p) \, * \, ... \, * \, M(y_{n+p-1},\,y_{n+p},\,t/p) \\ &\geq M(y_n,\,y_{n+1},\,t/p) \, * \, M(y_n,\,y_{n+1},\,t/p) \, * \, ... \, * \, M(y_n,\,y_{n+1},\,t/p) \\ &> 1 \, * \, 1 \, * \, ... \, * \, 1, \, using \, (3). \end{array}$

This implies that $M(y_n, y_{n+p}, t) \rightarrow 1$ as $n \rightarrow \infty$. Therefore, $\{y_n\}$ is a Cauchy sequence in X. Since X is complete, there exists a point z in X such that $y_n \rightarrow z$ as $n \rightarrow \infty$. Moreover, we have

 $y_{2n} = Ax_{2n} = Tx_{2n+1} \rightarrow z \text{ and } y_{2n+1} = Bx_{2n+1} = Sx_{2n+2} \rightarrow z.$

Suppose A and B are compatible and reciprocally continuous mappings, then by definition, we have $ASx_{2n} \rightarrow Az$ and $SAx_{2n} \rightarrow Sz$. Also, compatibility of A and S yields that $\lim_{n\to\infty} M(ASx_{2n}, SAx_{2n}, t) = 1$, that is, M(Az, Sz, t) = 1. Hence, we

have A using (since r Thus, v Again. R>0 AAz = implies N That is, introlies cam sho (E). In (36 a. a (61) > 1; This co # 2 DOV Examp This per あきゃ 2. $B_{0} = 21$ SZ=2. 12=2, A. 160. 161 A. B. (1) > 1

i nari

GENERALIZED FIXED POINT THEOREM

	have $Az = Sz$. Since $AX \subset TX$, there exists a point w in X such that $Az = Tw$. So,
pairs of	using (ii), we get $M(Az, Bw, t) \ge r(M(Sz, Tw, t)) = r(M(Az, Tw, t)) = r(1) = 1$, since $r(t) = 1$ for $t = 1$. This implies that $Az = Bw$.
	Thus, we have $Sz = Az = Tw = Bw$.
	Again, the pointwise R-weakly commutativity of A and S implies that there exists $R > 0$ such that M(ASx, SAz, t) \geq M(Az, Sz, t/R) = 1. That is, ASz = SAz and
r(t) > t	AAz = ASz = SSz. Similarly, the pointwise R-weakly commutativity of B and T implies that $BBW = BTW = TBw = TTw$. So that, using (ii), we have
mint.	$M(Az, AAz, t) = M(Bw, AAz, t) \ge r (M(SAz, Tw, t)) > M(AAZ, Az, t).$
given by	That is, $M(Az, AAz, t) = 1$. Hence, we have $Az = AAz$ and $Az = AAz = SAz$. This implies that Az is a common fixed point of A and S. Similarly, by using (ii), we
(1)	can show that Bw(= Az) is a common fixed point of B and T. The uniqueness of a common fixed point of the mappings A, B, S and T be easily verified by using (ii). In fact, if u' be another fixed point for mappings A, B, S and T, then, we have
	$M(u, u', t) = M(Au, Bu', t) \ge r(M(Su, Tu', t)) = r(M(u, u', t)) > M(u, u', t), for$
	r(t) > t and hence, we get $u = u'$.
	This completely establishes the theorem.
y_{2n+1}, t).	We now give an example to illustrate the above Theorem 2.1.
numbers	Example: Let $X = [2, 20]$ and M be the usual fuzzy metric on $(X, M, *)$. Define
for this, if	mappings A, B, S and T : $X \rightarrow X$ by
radiction.	A2 = 2, $Ax = 3$ if, $x > 2$;
0 (2)	$Bx = 2$ if, $x = 2 \text{ or } > 5$, $Bx = 6$ if, $2 < x \le 5$;
•••• <mark>></mark> 0. (3)	S2 = 2, $Sx = 6$ if, $x > 2$;
	$T2 = 2$, $Tx = 12$ if, $2 < x \le 5$, $Tx = x - 5$ if, $x > 5$.
y _{n+p} , t/p)	Also, we define M(Ax, By, t) = $\frac{t}{[t + d(x, y)]}$, for all x, y in X and for all t > 0. Then,
(°P)	A, B, S and T satisfy all the conditions of the above theorem with
a Cauchy	$r: [0, 1] \rightarrow [0, 1]$ by $r(t) = t^{1/2}$ for $0 < t < 1$ and $r(t) = 1$ for $t = 1$. So that, we have
$y_n \rightarrow z$ as	$r(t) > t$ for $0 < t < 1$. Also, M(Ax, By, t) $\ge r(M(Sx, Ty, t))$ for all x, y in X.
Jn - 7 2 45	Moreover, the pair (A, S) and (B, T) are R-weakly commuting and reciprocally
mand	continuous mappings on X. Thus, all the conditions of the above Theorem 2.1 are satisfied and $x = 2$ is a common fixed point of A, B, S and T.
s, then by	Remarks: As Pant [9] has shown that the reciprocally continuous maps need not
of A and S	be continuous, so this result generalizes the results of Chugh and Kumar [2] and
Hence, we	

[73]

KANHAIYA JHA

Vasuki [13]. It also improves the results of Balasubramaniam et. al [1], Pant and Jha [10] and other similar results for fixed points.

The Ne

Wat. 29

OI

Schwarp.

STREET, NO

in FPG

and a

in the

Ker We

Party of

- - R.

REFERENCES

- P. Balasubramaniam, S. Muralishankar and R. P. Pant, Common fixed points of four mappings in a fuzzy metric space, J. Fuzzy Math., 10(2) (2002), 379 – 384.
- R. Chugh and S. Kumar, Common fixed point theorem in fuzzy metric spaces, Bull. Cal. Math. Soc., 94(1) (2002), 17 – 22.
- Z. K. Deng, Fuzzy pseudo-metric spaces, J. Math. Anal. Appl., 86(1982), 74-95.
- M. A. Erceg, Metric spaces in fuzzy set theory, J. Math. Anal. Appl. 69 (1979), 202 - 230.
- A. George and P. Veeramani, On some results in fuzzy metric space, Fuzzy Sets and Systems, 64(1994), 395 – 399.
- M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27(1988), 385 – 389.
- O. Kalva and S. Seikkala, On fuzzy metric space, Fuzzy sets and Systems, 12(3) (1984), 215 – 229.
- O. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika, 11(1975), 326 – 334.
- R. P. Pant, Common fixed points of four mappings, Bull. Cal. Math. Soc., 90(1998), 281 – 286.
- R. P. Pant and K. Jha, A remark on common fixed points of four mappings in a fuzzy metric space, J. Fuzzy Math., 12(2) (2004), 433 – 437.
- B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 314 - 334.
- P. V. Subarahmanyam, A common fixed point theorem in fuzzy metric space, Inform Sci., 83 (1995), 103 – 112.
- R. Vasuki, Common fixed points for R-weakly commuting mappings in fuzzy metric spaces, Indian J. Pure Appl. Math., 30 (1999), 419 – 423.
- 14. L. A. Zadeh, Fuzzy sets, Inform and Control, 89(1965), 338 353.

[74]