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1. INTRODUCTION

The concept of fuzzy sets was initiated by Zadeh [14] in 1965. After that, a lot of
works have been done regarding fuzzy sets and applications. Deng[3], Erceg [4],
Kalva and Seikkala [7] introduced the concepts of fuzzy metric spaces in different
ways. In 1975, Kramosil and Michalek [8] introduced the fuzzy metric space by
generalizing the concept of probabilistic metric space to fuzzy situation. Grabiec
5] proved the contraction principle in the setting of the fuzzy metric space
wiroduced by Kramosil and Michalek [8]. Grabiec's result was further
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generalized by Subrahmanyam [12] for a pair of commuting mappings. Since
then, a substantial literature has been developed on this topic. Also, George and
Veermani [5] modified the notion of fuzzy metric spaces with the help of
continuous t-norm, by generalizing the concept of probabilistic metric space to
fuzzy situation. In 1999, Vasuki [13] introduced the concept of R-weak
commutativity of mappings in fuzzy metric space and Pan[9] introduced the
notion of reciprocal continuity of mappings in metric space and proved some
common fixed point theorems. Balasubramaniam et. al. [1] proved a fixed point
theorem, which generalizes a result of Pant [9] for fuzzy mappings in fuzzy metric
space.

Pant and Jha [10] proved a fixed point theorem that gives an analogue of the
results by Balasubramaniam et. al. [1] by obtaining a connection between the
continuity and reciprocal continuity for four mappings in fuzzy metric space.
Recently, Chugh and Kumar [2] proved a common fixed point theorem for four
mappings in fuzzy metric space generalizing the result of Vasuki [13]. The
- present paper is aimed to prove a fixed point theorem assuming the reciprocal
continuity of fuzzy mappings in fuzzy metric space that generalizes the results of
Chugh and Kuamr [2], Vasuki [13] and improves various other similar resuits of
fixed points. We also give an example to illustrate our main theorem.

We have used the following notions:

Definition 1.1 ([13]) Let X be any set. A fuzzy set A in X is a function with
domain X and values in [0, 1].

Definition 1.2 ([11]) A binary operation * : [0, 1] x [0, 1] — [0, 1] is called a
continuous t-norms if, ([0, 1], *) is an abelian topological monoid with unit 1
such thata* b <¢ * d whenevera<candb<d, foralla, b, ¢, d in [0, 1].
Examples of t-norms are a * b =ab,a* b=min {a, b}.

Definition 1.3 ([8]) The triplet (X, M, *) is called a fuzzy metric space (shortly, a
FM-space) if, X is an arbitrary set, * is a continuous t-norm and M is a fuzzy et
on X2 x [0, ) satisfying he following conditions: for all X.¥,zinX,s, t>0,

@) Mx,y,0)=0, M(x, y, t) > 0:

(i) MEx,y,)=1forallt>0if and only if x = y,

(i) M(x, y, t) = M(y, x, 1),

() MK y.0) * M(y, 2. 5) < M(x, z, t + ),

V) My, ): [0, ) — [0, 1] is left continuous for all X,ye Xands, t>0,

(Vi) limee M(x, y, ©) = 1, for all xyeX
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Definition 1.4 ([6]) A sequence {x,} is a fuzzy metric space (X, M, *) is called
Cauchy sequence if, limg_,.. M(Xn+p, Xns t) = 1 for every t > 0 and for each p> 0. A
fuzzy metric space (X, M, *) is complete if, every Cauchy sequence in X
converges in X.

Definition 1.5 ([6]) A sequence {x,} in a fuzzy metric space (X, M, *) is said to
be convergent to x in X if, limy_. M(xy, X, t)=1 foreach t > 0.

Definition 1.6 ([9]) Two self mappings A and S of a metric space (X, d) are called
compatible if, limg,.d(Asx,, SAx,) = 0 whenever {Xn} is a sequence such that
im0 AXp = limp_,. Sx, =t for some t in X,

Definition 1.7 ([1]) Two self mappings A and S of a fuzzy metric space (X, M, *)
are called compatible if, limp_. M(ASXp, SAxp, t) = 1 whenever {x,} is a
sequence such that lim,_,. Ax, = limy s Sx, = p for some p in X.

Definition 1.8 ([9]) Two self mappings A and S of a metric space (X, d) are called
H-weekly commuting at a point x in X if, d(ASx. SAx) <Rd(Ax, Sx). for R > 0.
Definition 1.9 ([1]) Two self mappings A and S of a fuzzy metric space (X, M, *)
are called weekly commutating if, M(ASx. SAx, 1) > A(Ax, Sx, t) foreach x € X
and t> (.

Definition 1.10 ([1]) Two self mappings A and S of a fuzzy metric space
(X. M, *) are called R-weekly commuting provided there exists some real number
R such that M(ASx, SAx, t) > M(Ax. Sx, t/R) form some x € X and t > 0.
Definition 1.11 ([1]) Two self mappings A and S of a fuzzy metric space
(X. M, *) are called pointwise R-weakly commuting on X if, given x in (X, M, *),
there exists R > 0 such that M(ASx, SAx. t) > M(Ax, Sx, t/R).

It is noted that R-weakly commutativity in fuzzy metric space implies weak
commutativity only when R < 1 (Chugh and Kumar [2]).

Definition 1.12 ([1]) Two self mappings A and S of a fuzzy metric space
(X. M, *) are said to be reciprocally continuous if, lim,_.. AS, = Ap and
UM SAXy = Sp whenever {x,} is a sequence such that limy. Sx, = p and
UM Axy = p for some p in X.
Note that in the metric setting if A and S are both continuous then they are
obvious!y reciprocal continuous. But the converse need not be true (Pant [9]).
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2. MAIN RESULTS

Theorem 2.1 Let (A, S) and (B, T) be pointwise R-weakly commuting pairs of
self mappings of complete fuzzy metric space (X, M, *) such that
(i) AXcTX,BXcSX,
(i) M(Ax, By, t) > r (M(Sx, Ty, 1)),
for all x, y € X, where r : [0, 1] = [0, 1] is continuous function such that r(t) > t
for each 0 < t < 1. If the pair (A, S) or (B, T) is compatible pair of reciprocally
continuous mappings. then A, B, S and T have a unique common fixed point.
Proof. Let xo be any point in X. We define sequences {x,} and {yn} in X given by
the rule
Yan = AXan = TXan+1 and Yan+1 = BXant1 = SXane2, forn=0,1,2,3,.... (1)
This can be done by virtue of (i). Then, using (ii), we get
M(Yan, Yanets 1) = M(AX2n, BXant1, 1)
> t(M(SX2n, TX2n+1, ) = H(M(Y20-1, Y20, 1)
> M(¥2n-1, Yans t),
since r(t) > t for 0 < t < 1. Similarly, we have M(Yane1s Yane2s £) > M(Y2ns Yanets V-
S0, {M(¥an Yans1, 1)}, for n> 0, is an increasing sequence of positive real numbers
in [0, 1] and therefore, tends to a limit a < 1. We claim that . = 1. For this, if
@ < 1, then on letting n — oo in relation (2), we get o > () > 0, @ contradiction.
Hence, we get o. = 1. Thus, for every n € N,
M(¥ns Yotts £) > M(¥nets Yo 1) and M(¥p, Yns1, t) = 1 asn —> oo, fort> 0. 3
Now, for any positive integer p, we get
M(¥ns Yarps 1) = MY, Yol t/p) * M(¥n+1, ¥ns2, tp) * ... * M(Ynp-15 Yntps t/p)
> M Yott VD) * MY Yoet, V) * .. ® M(¥n, Y1, UP)
=1 *1 % . %1, using/(3):
This implies that M(¥n, Ya+ps ) = 1 as n — . Therefore, {yn} is a Cauchy
sequence in X. Since X is complete, there exists a point z in X such that y, — z as

n — . Moreover, we have

yan = AXap = TXane1 = 2 and Yane1 = BXopet = SXomz = 2.
Suppose A and B are compatible and reciprocally continuous mappings, then by
definition, we have ASxz, — Az and SAxz, —> Sz. Also, compatibility of A and S
yields that limgse M(ASXa, SAxan, t) = 1, that is, M(Az, Sz, t) = 1. Hence, we
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have Az = Sz. Since AX < TX, there exists a point w in X such that Az = Tw. So,
using (ii), we get M(Az, Bw, t) > r((M(Sz, Tw, 1)) = r(M(Az, Tw, t)) = r(1) = 1,
since r(t) = 1 for t = 1. This implies that Az = Bw.

Thus, we have Sz= Az= Tw= Bw.

Again, the pointwise R-weakly commutativity of A and S implies that there exists
R > 0 such that M(ASx, SAz, t) > M(Az, Sz, t/R) = 1. That is, ASz = SAz and
AAz = ASz = §Sz. Similarly, the pointwise R-weakly commutativity of B and T
implies that BBW = BTW = TBw = TTw. So that, using (ii), we have

M(Az, AAz, t) = M(Bw, AAz, t) > r (M(SAz, Tw, 1)) > M(AAZ, Az, t).
That is, M(Az, AAz, t) = 1. Hence, we have Az= AAz and Az = AAz = SAz This
implies that Az is a common fixed point of A and S. Similarly, by using (ii), we
can show that Bw(= Az) is a common fixed point of B and T. The uniqueness of a
common fixed point of the mappings A, B, S and T be easily verified by using
141). In fact, if u' be another fixed point for mappings A, B, S and T, then, we have
Mlu, u', 1) = M(Au, Bu', t) > r(M(Su, Tu', t)) = r(M(u, u', 1)) > M(u, u', t), for
r(t) >t and hence, we get u=1u'.
This completely establishes the theorem,
We now give an example to illustrate the above Theorem 2.1.

Example: Let X = [2, 20] and M be the usual fuzzy metric on (X. M, *). Define
mappings A, B,Sand T : X = X by

A2=2 Ax=3if x>2;

Bx=2 if, x=2or>S5, Bx=6 it; 2Z=<x<5:
S2=2, Sx=6if, x> 2;

=2, Tx=12if,2<x<S5, Tx=x-5if, x> 5.

Also, we define M(Ax, By, t) = m, for all x, y in X and for all t > 0. Then,

A. B, S and T satisfy all the conditions of the above theorem with
r:[0,1] [0, 1] byr(t)=t" for0 <t <1 and r(t) = 1 for t = 1. So that, we have
nt) >t for 0 <t < 1. Also, M(Ax, By, t) > r(M(Sx, Ty, t) for all x, y in X.
Moreover, the pair (A, S) and (B, T) are R-weakly commuting and reciprocally
continuous mappings on X. Thus, all the conditions of the above Theorem 2.1 are
satisfied and x = 2 is a common fixed point of A, B, S and T.

Remarks: As Pant [9] has shown that the reciprocally continuous maps need not
e continuous. so this result generalizes the results of Chugh and Kumar [2] and
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Vasuki [13]. It also improves the results of Balasubramaniam et. al [1], Pant and
Jha [10] and other similar results for fixed points.
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