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Abstract: In this paper, the degree of approximation of conjugate of functions
belonging to Lip {§(t),.p} class by generalized Norlund means of conjugate series
of Key words: model, indirect technique, ratio, parameters, mortality, deaths,
Fourier series has been determined.

L. INTRODUCTION AND DEFINITION

Qureshi ([6]) has determined the degree of approximation of function t:(x),

conjugate of a function f € Lipo ,Lip(a,p) by Norlund method .The purpose of
this paper is to generalize above result in two ways and to determine the

approximation of E(x), conjugate of a function feLip{&(t) p}class, by
generalized Norlund means .

Let f be periodic with period 27 and integrable over(-r, m) in Lebesgue sense. Let
its Fourier series be given by

f(t)=%ao +Z(a,, cosnx + b, sinnx)= %—ao +Z‘An(x) : (1)

n=| n=|
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The conjugate series of the Fourier series (1) is given by

i’(an sinnx — b, cosnx)= —i B,(x). 2)

n=I n=|
|

We define norm | | by " f ”p = ( f" If(x)|l’dx)5 . p=1

and the degree of approximation E | (f ) is given by (Zygmund [8] )
E, (f)=min| f - T, |,
where T, (x) is a trigonometric polynomial of degree n.
A function fe Lipor if |f(x+t)-f(x)|=0(|{*) . for 0<a<l.

f(x)e Lip(a..p) for 0<x<2n . if
V/

2n p
[Jllf(x+t)—-f(x)’p dx] =0 ]tla), 0<a<l (McFadden[5]).
0

Given a positive increasing function &;(t) and an integer p 21,

Keywords and phrases : Lip {£(t),p} class of functions , Fourier series , Degree of
approximation . Generalized Norlund means.
Subject of classification (2007) : 42B05 , 42B08.

f(x)e Lip(2(t).p) if

1
( L‘ "|f(x + t)-f(t).]P-dx)p =0(E(t)  (Siddigi[7]). @)

o0 1
Let Zun be an infinite series having its n'™ partial sum §y= Zu,, :
n=0 v={)

Let {p,} and {q, | be two sequences of real numbers such that

n
Ro =) p,dpk #0Vn20.
k=0

For any sequence {sn } we write

tl
The gene
th—>s,
summabl
S, — S(»

(Borwein
The neces

and p,,

The (N, f
method (1

n+q-

Pn = (a—l
We use fol

w(t)

We prove t
Theorem: |
non- nega
monotonic

If f:R—
class, &(t) is
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l n
tnp‘q S _Z Pi9o-kSpk - (4)

Rn k=0
The generalized Norlund transform of the sequence {s, }is the sequence {t i } If

o
th? —s.,as n — o, then the series u, or the uence {s_y is said to be
n n seq n

n=0

summable S by generalized Norlund method (N .p.q) and is denoted by
S, — S(N,p,q).

(Borwein [1])

The necessary and sufficient conditions for a (N, p. q) method to be regular are

lglpn—k%,=0(lkn|)

and p,,=o(|R,|),as n—w, forevery fixed k 2 0 for whichq, #0.

The (N, p, q) method reduces to the Nérlund method if q, =1for all n. The
method (N, p, q) reduces to Riesz method ( I;T,qn)if p, =1, for all n .When
Dio= (2':‘,""), 0. >0, andq, =1V n, the method (N, p,q) reduces to (C, a).

We use following notations:

W)=+ )~ Ex—1), ;(x)=—2—1;].w(t)cot%dt

2. MAIN THEOREM

We prove the following:

Theorem: Let the regular generalized Norlund method (N, p. q) be defined by a
non- negative, monotonic non-increasing sequence {p,, }and a non-negative,
monotonic non- decreasing sequence {q, }of real constants such that

q,p, =O(R, logn) with n>ng >1. (5)

If f:R—R is a 2x periodic, Lebesgue integrable and belonging to Lip(&(t),p)
class, &(1) is positive increasing function of t satisfving
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O C I

R0/ W
J{W]m ~of?) 5

where § is an arbitrary number such that q(1- 8)-1>0, q the conjugate index of p
and the condition (6) and (7) hold uniformly in x, then degree of approximation of

£(x),conjugate of f Lip{&(t),p} ,by generalized Nérlund means
o I = : : o
ta (x)= Z Py 4, S« of the conjugate series (2) is given by

Rn k=0
1
] O[n ; é(l) log nJ (8)
\n
p

3. LEMMAS
The following lemmas are required for the proof of our theorem

Lemma 1 (McFadden , 1942), If {p, } is a non-negative non-increasing sequence
for0<a<b<n .0<t<n then
= o( p_,)
t

Lemma 2 If {pn}is a non-negative non-increasing and { .} isa non-negative
non- decreasing sequence then

and

~Pq ~

tn (x) - f(x)

n Pk cos(n —k+ %)t‘

k=0 sin d.

2n

@Proof By £

. Pi cos(n

M

sin

Then™ partia

8y taking (N, p
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gt

2nR | =0 sinl ' B

q,P,
R, t

2
@roof By Abel's lemma, we have

+ Pilna cos(n—k+-1—)(
1 Z 2 < qn
nR

s max
= | "t TCR,, (Ismsn
2

= 0(%] ,by Lemma 1 .
R, t

fn

4. PROOF OF THE THEOREM

Then™ partial sum of conjugate Fourier series is given by

1
Sa(x)= --—fcot w(t)dt+ fcos(n k.’J

E et
sin —

cos(n klj'
Sa (x)- (——J:'cot y(t) dt)- f — =7 ult)dt.

sm—
2

By taking (N. p. q) means of S, (x) , we get
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cos(n -k + %)t
dt

te (6)-£()=—— [ \v(t)gpuqn-k

2nR sin

=1, +1,. ©)

Applying Holder’s inequality and the fact that w(t)e Lip(2(t).p),we have

1 vy, ' s
ey J( £(t) J dtp 1 )20 2

L q
=o(%]o(g(%)) !:;?dt , for some 0 <e<+

by second mean value theorem for integral.

o)

Similarly, as above, we have
1

e T(t%’(q}pdz | I( 9§kt

é(t) i 21"5Rnt_& k=0 Sin%
n

n

NS
q 9

&

(10)

Il
o

Following
Corollary 1
to Lipa, -'1,-
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1

q
= ofn? J( d_g“;’“} dt . by(7)and Lemma 2
t

oL [

e =1
Ro )i (l)‘_s .
7
1
- x q
=o[";§npn g( nl)) J‘ ) Y by mean value theorem
n

B

=O(n };é(-,l,-)logn), by (5) and hypothesis of theorem

. (11)
' Combining from (9) to (11) , we have

o )=16)] = o(n/v £(1) logn)

5. COROLLARIES
Following Corollaries can be derived from the theorem.

Corollary 1 If é(t) =t" then the degree of approximation of a function belonging
to Lipa , +<o<l isgivenby
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u_l.

B Pfl_tt -0 logn .
n p

Corollary 2 1f p— o in Cor.] then we have for,0 <a <1,

" w)-69) -0 22

Remark;-An independent proof of Corollaries (1) and (2) can be developed along
the same lines as the theorem.
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