# On the Approximation of Conjugate of Functions Belonging To Lip $\{\xi(\mathrm{t}), \mathrm{p}\}$ Class By Generalized Nörlund Means 

SHYAM LAL<br>JTENDRA KUMAR KUSHWAHA

Abstract: In this paper, the degree of approximation of conjugate of functions belonging to $\operatorname{Lip}\{\xi(t), p$ class by generalized Nörlund means of conjugate series of Key words: model, indirect technique, ratio, parameters, mortality, deaths. Fourier series has been determined.

## 1. INTRODUCTION AND DEFINITION

Qureshi ([6]) has determined the degree of approximation of function $\tilde{f}(x)$, conjugate of a function $\mathrm{f} \in \operatorname{Lip} \alpha, \operatorname{Lip}(\alpha, \mathrm{p})$ by Nörlund method. The purpose of this paper is to generalize above result in two ways and to determine the approximation of $\tilde{f}(x)$, conjugate of a function $f \in \operatorname{Lip}\{\xi(t), p\}$ class, by generalized Nörlund means .
Let f be periodic with period $2 \pi$ and integrable over $(-\pi, \pi)$ in Lebesgue sense. Let its Fourier series be given by

$$
\begin{equation*}
f(t)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} A_{n}(x) \tag{1}
\end{equation*}
$$

The conjugate series of the Fourier series (1) is given by

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(a_{n} \sin n x-b_{n} \cos n x\right)=-\sum_{n=1}^{\infty} B_{n}(x) \tag{2}
\end{equation*}
$$

We define norm $\left\|\|_{p} \text { by }\right\|_{f} \|_{p}=\left(\int_{0}^{2 \pi}|f(x)|^{p} d x\right)^{\frac{1}{p}} \quad p \geq 1$
and the degree of approximation $E_{n}(f)$ is given by (Zygmund [8])

$$
E_{n}(f)=\min \left\|f-T_{n}\right\|_{p}
$$

where $T_{n}(x)$ is a trigonometric polynomial of degree $n$.
A function $f \in \operatorname{Lip\alpha }$ if $|f(x+t)-f(x)|=O\left(|t|^{\alpha}\right)$, for $0<\alpha \leq 1$.

$$
\begin{aligned}
& f(x) \in \operatorname{Lip}(\alpha, p) \text { for } 0 \leq x \leq 2 \pi \text {, if } \\
& \left(\int_{0}^{2 \pi}|f(x+t)-f(x)|^{p} d x\right)^{1 / p}=O\left(|t|^{\alpha}\right), \quad 0<\alpha \leq 1 \quad \text { (McFadden [5] ). }
\end{aligned}
$$

Given a positive increasing function $\xi(\mathrm{t})$ and an integer $\mathrm{p} \geq 1$,
Keywords and phirases: Lip $\{\xi(\mathrm{t}), \mathrm{p}\}$ class of functions, Fourier series, Degree of approximation. Generalized Nörlund means.
Subject of classification (2007) : 42B05, 42B08.

$$
\begin{align*}
& f(x) \in \operatorname{Lip}(\xi(\mathrm{t}) \cdot \mathrm{p}) \text { if } \\
& \left.\left(\int_{0}^{2 \pi}|\mathrm{f}(\mathrm{x}+\mathrm{t})-\mathrm{f}(\mathrm{t})|^{p} \mathrm{dx}\right)^{\frac{1}{p}}=O(\xi(\mathrm{t})) \quad \text { (Siddiqi}[7]\right) . \tag{3}
\end{align*}
$$

Let $\sum_{n=0}^{\infty} u_{n}$ be an infinite series having its $n^{\text {th }}$ partial sum $s_{n}=\sum_{v=0}^{n} u_{n}$.
Let $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ be two sequences of real numbers such that

$$
\mathrm{R}_{\mathrm{n}}==\sum_{\mathrm{k}=0}^{\mathrm{n}} \mathrm{p}_{\mathrm{k}} \mathrm{q}_{\mathrm{n}-\mathrm{k}} \neq 0 \quad \forall \mathrm{n} \geq 0
$$

For any sequence $\left\{s_{n}\right\}$ we write

If $f: R \rightarrow$ class, $\xi(\mathrm{t})$ is

$$
\begin{equation*}
t_{n}^{p, q}=\frac{1}{R_{n}} \sum_{k=0}^{n} p_{k} q_{n-k} s_{n-k} . \tag{4}
\end{equation*}
$$

The generalized Nörlund transform of the sequence $\left\{s_{n}\right\}$ is the sequence $\left\{t_{n}^{p, q}\right\}$. If $t_{n}^{p, q} \rightarrow s$, as $n \rightarrow \infty$, then the series $\sum_{n=0}^{\infty} u_{n}$ or the sequence $\left\{s_{n}\right\}$ is said to be summable $S$ by generalized Nörlund method $(N, p, q)$ and is denoted by $\mathrm{S}_{\mathrm{n}} \rightarrow \mathrm{S}(\mathrm{N}, \mathrm{p}, \mathrm{q})$.
(Borwein [1])
The necessary and sufficient conditions for a ( $\mathrm{N}, \mathrm{p}, \mathrm{q}$ ) method to be regular are

$$
\sum_{k=0}^{n}\left|p_{n-k} q_{k}\right|=O\left(\left|R_{n}\right|\right)
$$

and $p_{n-k}=o\left(\left|R_{n}\right|\right)$, as $n \rightarrow \infty$, for every fixed $k \geq 0$ for which $q_{k} \neq 0$.
The $(N, p, q)$ method reduces to the Nörlund method if $q_{n}=1$ for all $n$. The method $(N, p, q)$ reduces to Riesz method $\left(\tilde{N}, q_{n}\right)$ if $p_{n}=1$, for all $n$. When $\mathrm{p}_{\mathrm{n}}=\binom{\mathrm{n}+\alpha-1}{\alpha-1}, \quad \alpha>0$, and $\mathrm{q}_{\mathrm{n}}=1 \forall \mathrm{n}$, the method ( $\mathrm{N}, \mathrm{p}, \mathrm{q}$ ) reduces to $(\mathrm{C}, \alpha)$. We use following notations:

$$
\psi(\mathrm{t})=\mathrm{f}(\mathrm{x}+\mathrm{t})-\mathrm{f}(\mathrm{x}-\mathrm{t}), \quad \tilde{\mathrm{f}}(\mathrm{x})=-\frac{1}{2 \pi} \int_{0}^{\pi} \psi(\mathrm{t}) \cot \frac{\mathrm{t}}{2} \mathrm{dt}
$$

## 2. MAIN THEOREM

We prove the following:
Theorem: Let the regular generalized Nörlund method (N, p,q) be defined by a non- negative, monotonic non-increasing sequence $\left\{p_{n}\right\}$ and a non-negative, monotonic non- decreasing sequence $\left\{q_{n}\right\}$ of real constants such that

$$
\begin{equation*}
\mathrm{q}_{\mathrm{n}} \mathrm{p}_{\mathrm{n}}=\mathrm{O}\left(\mathrm{R}_{\mathrm{n}} \log \mathrm{n}\right) \text { with } \mathrm{n} \geq \mathrm{n}_{0}>1 \tag{5}
\end{equation*}
$$

If $f: R \rightarrow R$ is a $2 \pi$ periodic, Lebesgue integrable and belonging to $\operatorname{Lip}(\xi(t), p)$ class, $\xi(\mathrm{t})$ is positive increasing function of t satisfying

$$
\begin{equation*}
\left\{\int_{0}^{\frac{1}{n}}\left(\frac{t|\psi(t)|}{\xi(t)}\right)^{p} d t\right\}^{\frac{1}{p}}=0\left(\frac{1}{n}\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\int_{\frac{1}{n}}^{\pi}\left(\frac{t^{-\delta}|\psi(t)|}{\xi(t)}\right)^{p} d t\right\}^{\frac{1}{p}}=O\left(n^{\delta}\right) \tag{7}
\end{equation*}
$$

where $\delta$ is an arbitrary number such that $q(1-\delta)-1>0$, $q$ the conjugate index of $p$ and the condition (6) and (7) hold uniformly in $x$, then degree of approximation of $\tilde{f}(\mathrm{x})$, conjugate of $\mathrm{f} \in \operatorname{Lip}\{\xi(\mathrm{t}), \mathrm{p}\}$, by generalized Nörlund means
$\tilde{t}_{n}^{p, q}(x)=\frac{1}{R_{n}} \sum_{k=0}^{n} p_{k} q_{n-k} s_{k}$ of the conjugate series (2) is given by

$$
\begin{equation*}
\left\|\int_{t_{n}}^{-p . q}(x)-\tilde{f}(x)\right\|_{p}=O\left(n^{\frac{1}{p}} \xi\left(\frac{1}{n}\right) \log n\right) \tag{8}
\end{equation*}
$$

## 3. LEMMAS

The following lemmas are required for the proof of our theorem
Lemma 1 (McFadden, 1942), If $\left\{p_{n}\right\}$ is a non-negative non-increasing sequence for $0 \leq \mathrm{a} \leq \mathrm{b} \leq \mathrm{n} \quad, 0<\mathrm{t} \leq \pi$ then

$$
\left|\sum_{k=0}^{n} \frac{p_{k} \cos \left(n-k+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right|=O\left(\frac{p_{\tau}}{t}\right)
$$

Lemma 2 If $\left\{p_{n}\right\}$ is a non-negative non-increasing and $\left\{q_{n}\right\}$ is a non-negative non- decreasing sequence then
groof By


The $\mathrm{n}^{\text {th }}$ partia
(6)
ex of $p$ nation of
(8)

$$
\left|\frac{1}{2 \pi R_{n}} \sum_{k=0}^{n} \frac{p_{k} q_{n-k} \cos \left(n-k+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right|=O\left(\frac{q_{n} p_{\tau}}{R_{n} t}\right) \quad \text { if } \frac{1}{n} \leq t \leq \pi
$$

Proof By Abel's lemma, we have

$$
\left|\frac{1}{2 \pi R_{n}} \sum_{k=0}^{n} \frac{p_{k} q_{n-k} \cos \left(n-k+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right| \leq \frac{q_{n}}{\pi R_{n}} \max
$$

$$
\left|\sum_{k=0}^{n} \frac{p_{k} \cos \left(n-k+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right|
$$

$$
=O\left(\frac{q_{n} p_{r}}{R_{n} t}\right) \quad, \text { by Lemma } 1
$$

## 4. PROOF OF THE THEOREM

The $n^{\text {th }}$ partial sum of conjugate Fourier series is given by

$$
\begin{aligned}
& \tilde{S}_{n}(x)=-\frac{1}{2 \pi} \int_{0}^{\pi} \cot \frac{t}{2} \psi(t) d t+\frac{1}{2 \pi} \int^{\pi} \frac{\cos \left(n-k \frac{1}{2}\right) t}{\sin \frac{t}{2}} \psi(t) d t \\
& \tilde{S}_{n}(x)-\left(-\frac{1}{2 \pi} \int_{0}^{\pi} \cot \frac{t}{2} \psi(t) d t\right)=\frac{1}{2 \pi} \int_{0}^{\pi} \frac{\cos \left(n-k \frac{1}{2}\right) t}{\sin \frac{t}{2}} \psi(t) d t .
\end{aligned}
$$

By taking (N, p, q) means of $\tilde{S}_{n}(x)$, we get

$$
\begin{align*}
\mathrm{t}_{\mathrm{n}}^{-p . q}(x)-\tilde{f}(x) & =\frac{1}{2 \pi R_{n}} \int_{0}^{e} \psi(t) \sum_{k=0}^{n} p_{k} q_{n-k} \frac{\cos \left(n-k+\frac{1}{2}\right) t}{\sin \frac{1}{2}} d t \\
& =\frac{1}{2 \pi R_{n}}\left(\int_{0}^{\frac{1}{n}}+\int_{\frac{1}{n}}^{\pi}\right) \psi(t) \sum_{k=0}^{n} p_{k} q_{n-k} \frac{\cos \left(n-k+\frac{1}{2}\right) t}{\sin \frac{1}{2}} d t \\
& =I_{1}+I_{2} . \tag{9}
\end{align*}
$$

Applying Hölder's inequality and the fact that $\psi(\mathrm{t}) \in \operatorname{Lip}(\xi(\mathrm{t})$, p$)$, we have

$$
\begin{aligned}
& \left|I_{1}\right| \leq \frac{1}{2 \pi R_{n}}\left\{\int_{0}^{\frac{1}{n}}\left(\frac{t|\psi(t)|}{\xi(t)}\right)^{p} d t\right\}^{\frac{1}{p}}\left\{\int_{0}^{\frac{1}{n}} \int_{t} \frac{\xi(t)}{t} \sum_{k=0}^{n} p_{k} q_{n-k}\left|\frac{\cos \left(n-k+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right|^{q} d t\right\}^{\frac{1}{q}} \\
& \leq O\left(\frac{1}{n}\right)\left\{\int_{0}^{\frac{1}{n}}\left(\frac{\xi(t)}{t^{2}}\right)^{q} d t\right\}^{\frac{1}{q}}, \text { by (6) } \\
& \quad=O\left(\frac{1}{n}\right) O\left(\xi\left(\frac{1}{n}\right)\right)\left(\int_{\epsilon}^{\frac{1}{n}} \frac{1}{t^{2 q}} d t\right)^{\frac{1}{q}} \text {, for some } 0<\in<\frac{1}{n}
\end{aligned}
$$

Similarly, as above, we have

$$
\left|I_{2}\right|=\left[\int_{\frac{1}{n}}^{\pi}\left(\frac{t^{-\delta}|\psi(t)|}{\xi(t)}\right)^{p} d t\right]^{\frac{1}{p}}\left[\int_{\frac{1}{n}}^{\pi}\left(\frac{\xi(t)}{2 \pi R_{n} t^{-\delta}} \sum_{k=0}^{n} \frac{\cos \left(n-k+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right)^{q} d t\right]^{\frac{1}{q}}
$$

Following Corollary 1 to $\operatorname{Lip} \alpha, \frac{1}{p}$

$$
\begin{aligned}
& =O\left(n^{\delta}\right)\left[\int_{\frac{1}{n}}^{\pi}\left(\frac{\xi(t) q_{n} p_{\tau}}{t^{-\delta} t R_{n}}\right)^{q} d t\right]^{\frac{1}{q}}, \quad \text { by }(7) \text { and Lemma } 2 \\
& =O\left(n^{\delta}\right) O\left(\frac{q_{n}}{R_{n}}\right)\left[\int_{\frac{1}{n}}^{\pi}\left(\frac{\xi(t) p_{\tau}}{t^{1-\delta}}\right)^{q} d t\right]^{\frac{1}{q}} \\
& =O\left(\frac{n^{\delta} q_{n}}{R_{n}}\right)\left[\int_{\frac{1}{\pi}}^{n}\left\{\frac{\xi\left(\frac{1}{y}\right) p[y]}{\left(\frac{1}{y}\right)^{1-\delta}}\right\}^{q} \frac{d y}{y^{2}}\right]^{\frac{1}{q}} \text {, taking } t=\frac{1}{y} \\
& =O\left(\frac{n^{\delta} q_{n} p_{n}}{R_{n}} \xi\left(\frac{1}{n}\right)\right)\left[\int_{\frac{1}{\pi}}^{n} y^{(1-\delta) q-2} d y\right]^{\frac{1}{q}}, \text { by mean value theorem } \\
& =O\left(\frac{n^{\delta} q_{n} p_{n}}{R_{n}} \xi\left(\frac{1}{n}\right)\right)\left(\frac{n^{q(1-\delta)-1}-\left(\frac{1}{\pi}\right)^{q(1-\delta)-1}}{\left.q^{(1-\delta}\right)-1}\right)^{\frac{1}{q}} \\
& =O\left(n^{1 / p} \xi\left(\frac{1}{n}\right) \log n\right), \quad \text { by } \quad(5) \text { and hypothesis of theorem } \\
& (11)
\end{aligned}
$$

Combining from (9) to (11), we have

$$
\left\|\tilde{t}_{n}^{p, q}(x)-\tilde{f}(x)\right\|_{p}=O\left(n^{1 / p} \varepsilon\left(\frac{1}{n}\right) \log n\right)
$$

## 5. COROLLARIES

Following Corollaries can be derived from the theorem.
Corollary 1 If $\xi(t)=t^{\alpha}$ then the degree of approximation of a function belonging to Lip $\alpha, \frac{1}{p}<\alpha<1$ is given by

$$
\left\|\tilde{t}_{n}^{p . q}-\tilde{f}\right\|=0\left(\frac{\log n}{n^{\alpha-\frac{1}{p}}}\right)
$$

Corofary 2 If $p \rightarrow \infty$ in Cor. 1 then we have for, $0<\alpha<1$,

$$
\left\|\operatorname{tn}_{n}^{p . q}(x)-\tilde{f}(x)\right\|=0\left(\frac{\log n}{n^{\alpha}}\right)
$$

Remark:-An independent proof of Corollaries (1) and (2) can be developed along the same lines as the theorem.

## REFERENCES

Borwein, D., On products of sequences, J. London Math. Soc., 33 (1958), 352357.

Hardy, G. H., On the summability of Fourier series, Proc. London Math. Soc., 12(1913), 365-372.
Khare, S. P., Generalized Nörlund summability of Fourier series and its conjugate series, Indian J. Pure Appl. Math. 21(1990) no. 5, 457-467.
Khan, Huzoor H., On the degree of approximation of functions belonging to the class Lip ( $\alpha, \mathrm{p}$ ), Indian J. Pure Appl. Math., 5(1974) no.2, 132-136.
McFadden, Leonard, Absolute Nörlund summability, Duke Math. J., 9(1942), 168-207.
Qureshi, K., On the degree of approximation of functions belonging to the class $\operatorname{Lip}(\alpha, \mathrm{p})$ by means of a conjugate series, Indian J. Pure Appl. Math., 13 (1882) no.5, 560-563.

Siddiqi, A. H., Ph.D. Thesis (1967), Aligarh Muslim University, Aligarh.
Zygmund, A., Trigonometric series, Vol. I , II, Second edition (1959), Cambridge University Press.

Abstr mater Nepal The n (excluc might estima and 35 and 28 Key w

Matern is take deaths to less within giving mostly

