Pant and

non fixed h., 10(2) y metric 36(1982),

Appl. 69

ce, Fuzzy

Systems,

Systems,

a series of

ne spaces,

lath. Soc.,

mappings

Math., 10

zy metric

appings in 423.

The Nepali Math. Sc. Report Vol. 29, No. 1 & 2, 2009

Operation Approaches on Fuzzy Pre-Open Sets

M. SUDHA, E. ROJA & M.K. UMA Department of Mathematics, Sri Sarada College For Women, Salem – 636 016. Tamilnadu, India.

Abstract: In this paper, the concepts of an operation γ on a family of fuzzy preopen sets in a fuzzy topological spaces (X, T) is introduced. Using the operation γ on FPO (X) the concepts of fuzzy pre- γ -open sets, fuzzy pre- γ -border, fuzzy pre- γ frontier, fuzzy pre-(γ , β)-continuous mappings, fuzzy pre- γ -normal spaces and fuzzy pre- γ -compact spaces are introduced. Some interesting properties and characterizations of them are investigated. Further, fuzzy pre- γ -R_o and fuzzy pre- γ -T_i (i = 0, 1/2, 1, 2) spaces are introduced and interrelations among the spaces are discussed with relevant examples.

Key Words

Fuzzy pre-γ-open set, fuzzy pre-γ-border, fuzzy pre-γ-frontier, fuzzy pre-(γ, β)continuous mapping, fuzzy pre-γ-normal space, fuzzy pre-γ-compact space, fuzzy pre-γ-R_o space, fuzzy pre- γ-T_i (i = 0, 1/2, 1, 2) space. **2000** Mathematics subject classification : 54A40-03E72.

1. INTRODUCTION AND PRELIMINARIES

The concept of fuzzy sets has invaded almost all branches of mathematics since the introduction of the concept by Zadeh [11]. Fuzzy sets have applications in many fields such as information [7] and control [8]. The theory of fuzzy topological spaces was introduced and developed by Chang [3]. The concept of fuzzy pre-open sets and fuzzy pre-closed sets were introduced by Singal and Prakash [6]. The concept of fuzzy pre-continuity was introduced by Bin Shahna [1] and was studied by Uma, Roja and Balasubramanian [10]. By using the concepts of semi- γ -open sets introduced by Sai Sundara Krishnan, Ganster and Balachandran [4] and that of g-border and g-frontier introduced by Caldas, Jafari and Noiri [2], the concepts of fuzzy pre- γ -open set, fuzzy pre- γ -border, pre- γ frontier, fuzzy pre-(γ , β)-continuous mappings, fuzzy pre- γ -normal spaces, fuzzy pre- γ -compact spaces, fuzzy pre- γ -T_i (i = 0, 1, 2) spaces and fuzzy pre- γ -R_o space are introduced and interrelations among the spaces are discussed with relevant examples. Defin

Le O

in and

Territor.

Lat 63

642 8

Defini

用 法的

A. Barr

Printle 1

Defini

100

100

Die 1952 Die Text

Le C

100 B (1

STREET, MAR

The sale

Derfinit

Let CL

Eastern B

10.22

Interio

See C.L.

Easts a

and in all

dinned Defini

Definition 1.1 [6]

Let (X, T) be a fuzzy topological space. A fuzzy set λ in (X, T) is said to be fuzzy pre-open if $\lambda \leq int cl (\lambda)$.

The complement of a fuzzy pre-open set is fuzzy pre-closed.

Definition 1.2 [4]

Let (X, T) be a fuzzy topological space. An operation γ on the topology T is a mapping from T into power set P(X) of X such that $V \subseteq V^{\gamma}$ for each $V \in T$, where

 V^{γ} denotes the value of γ at V. It is denoted by $\gamma : T \to P(X)$.

Definition 1.3 [4]

A subset A of a topological space is called a γ -open set of (X, T) if for each $x \in A$ there exists an open set U such that $x \in U$ and $U^{\gamma} \subseteq A$. The complement of a γ -open set is said to be γ -closed.

Notation 1.1 [4]

SO(X) denotes the family of all semi-open sets of (X, T).

Definition 1.4 [4]

Let (X, T) be a topological space. An operation γ on the SO(X) is a mapping from SO(X) into a power set P(X) of X such that $V \subseteq V^{\gamma}$ for each $V \in SO(X)$ and V^{γ} denotes the value of γ at V. It is denoted by $\gamma : SO(X) \rightarrow P(X)$.

Definition 1.5 [4]

Let (X, T) be a topological space and γ be an operation on SO(X). Then a subset A of X is said to be a semi- γ -open set if for each $x \in A$, there exists a semi-open set U such that $x \in U$ and $U^{\gamma} \subseteq A$. Also SO(X)_{γ} denotes the family of semi- γ -open sets in X.

OPERATION APPROACHES ON FUZZY PRE-OPEN SETS ...

Definition 1.6 [2]

Let (X, T) be a topological space. For a subset A of (X, T), $b_g(A) = A - int_g(A)$ is said to be the g-border of A where intg (A) is the set of all g-interior points of A. Definition 1.7 [2]

Let (X, T) be a topological space. For a subset A of (X, T), $Fr_g(A) = cl_g(A) - int_g$ (A) is said to be the g-frontier of A.

Definition 1.8 [9]

A topological space (X, T) is said to be a fuzzy pre- $T_{1/2}$ space if every gfpreclosed set in (X, T) is fuzzy closed in (X, T).

Definition 1.9 [5]

A fuzzy set λ is quasi-coincident with a fuzzy set μ , denoted by $\lambda q \mu$, if there exists $x \in X$ such that $\lambda(x) + \mu(x) > 1$. Otherwise $\lambda \not \in \mu$.

2. FUZZY PRE-γ-OPEN SETS

Definition 2.1

Let (X, T) be a fuzzy topological space. Let $\gamma : I^X \to T$ be an operation such that $\lambda^{\gamma} = \wedge \mu$ where $\lambda \leq \mu$, for each fuzzy open set μ in (X, T), $\lambda \in I^{X}$ and λ^{γ} denotes the value of γ at λ . That is, $\lambda^{\gamma} = \gamma(\lambda)$. **Definition 2.2**

Let (X, T) be a fuzzy topological space. Let $\gamma : I^X \to T$ be an operation. A fuzzy set δ is said to be fuzzy- γ -open if for a fuzzy set α with $\alpha \leq \delta$, there exists a fuzzy

open set λ such that $\alpha \leq \lambda$ and $\lambda^{\gamma} \leq \delta$.

The complement of a fuzzy γ -open-set is fuzzy- γ -closed.

Definition 2.3

Let (X, T) be a fuzzy topological space. Let $\gamma : I^X \to T$ be an operation. For any fuzzy set λ , fuzzy- γ -interior of λ (briefly, γ -int (λ)) is defined as γ -int (λ) = $\vee \{ \mu :$ $\mu \leq \lambda$ and μ is fuzzy- γ -open}. **Definition 2.4**

Let (X, T) be a fuzzy topological space. Let $\gamma : I^X \to T$ be an operation. For any fuzzy set λ , fuzzy- γ -closure of λ (briefly, γ -cl (λ)) is defined as γ -cl (λ) = $\wedge \{ \mu :$ $\mu \ge \lambda$ and μ is fuzzy- γ -closed}. Remark 2.1

and Shahna ing the er and Jafari pre-yfuzzy space relevant

be fuzzy

T is a

T. where

 $ach x \in A$ ent of a y-

ping from X) and V^{γ}

a subset emi-open f semi-y γ -int $(1 - \lambda) = 1 - (\gamma$ -cl $(\lambda))$.

Notation 2.1

FPO (X) denotes the family of all fuzzy pre-open sets of (X, T).

Definition 2.5

Let (X, T) be a fuzzy topological space. Let γ : FPO (X) \rightarrow T be an operation such that $\lambda^{\gamma} = \wedge \mu$, where $\lambda \leq \mu$, for each fuzzy open set μ in (X, T) and $\lambda \in$ FPO (X).

Definition 2.6

Let (X, T) be a fuzzy topological space. Let γ be an operation on FPO (X). A fuzzy set δ is called fuzzy pre- γ -open if for a fuzzy set α with $\alpha \leq \delta$, there exists a fuzzy pre-open set λ such that $\alpha \leq \lambda$ and $\lambda^{\gamma} \leq \delta$.

The complement of a fuzzy pre- γ -open set is fuzzy pre- γ -closed.

Definition 2.7

Let (X, T) be a fuzzy topological space. Let γ be an operation on FPO (X). The fuzzy pre- γ -interior of δ (briefly, γ -fp int (δ)) is defined by γ -fp int (δ) = $\vee \{ \mu : \mu \leq \delta \text{ and } \mu \text{ is fuzzy pre-}\gamma\text{-open } \}$.

Definition 2.8

Let (X, T) be a fuzzy topological space. Let γ be an operation on FPO (X). The fuzzy pre- γ -closure of δ (briefly, γ -fp cl (δ)) is defined by γ -fp cl (δ) = $\land \{ \mu : \mu \ge \delta \text{ and } \mu \text{ is fuzzy pre-}\gamma\text{-closed } \}$.

Remark 2.2

 γ -fp int $(1 - \delta) = 1 - (\gamma$ -fp cl $(\delta))$.

Remark 2.3

Fuzzy pre-open set and fuzzy pre- γ -open set are independent notions.

Example 2.1

Let X = { a, b }. Define T = { 0, 1, λ_1 , λ_2 } where λ_1 , λ_2 : X \rightarrow [0, 1] are defined as λ_1 (a) = 0.3, λ_1 (b) = 0.2, λ_2 (a) = 0.45, λ_2 (b) = 0.4. Let γ : FPO (X) \rightarrow T be an operation. Let μ , δ , η : X \rightarrow [0, 1] be defined as μ (a) = 0.4, μ (b) = 0.3, δ (a) = 0.45, δ (b) = 0.3, η (a) = 0.55, η (b) = 0.65. Now int cl (μ) $\geq \mu$. Hence μ is fuzzy **pre-open but not fuzzy pre-\gamma-open.** Now, for a fuzzy set α with $\alpha \leq \eta$, then $\alpha \leq \mu$ and $\mu^{\gamma} \leq \eta$. Hence η is fuzzy pre- γ -open but not fuzzy pre-open.

Let (X sets in Propos Let (X. stateme B Y r 23 送 is 2 £ Y 5. P а. T 0 а. 0 Definit Let (X, furry s mr. (A.)). Definiti Let (X. any fuz =1-(7 Definiti Let CX. Staty St A-0 Definiti Let OL and figz

100 - 17

Let (X, T) be a fuzzy topological space. Let λ and μ be any two fuzzy pre- γ -open sets in (X, T). Then $\lambda \lor \mu$ (resp. $\lambda \land \mu$) is also a fuzzy pre- γ -open set in (X, T).

Proposition 2.2

Let (X, T) be a fuzzy topological space. For any two fuzzy sets λ , μ , the following statements hold :

- a. If λ is fuzzy- γ -open then λ is fuzzy pre- γ -open.
- b. γ -int (λ) is fuzzy pre- γ -open.
- c. γ -cl (λ) is fuzzy pre- γ -closed.
- d. is fuzzy pre- γ -open iff $\lambda = \gamma$ -fp int (λ).
- e. is fuzzy pre- γ -closed iff $\lambda = \gamma$ -fp cl (λ).
- f. γ -int $(\lambda) \le \gamma$ -fp int $(\lambda) \le \lambda \le \gamma$ -fp cl $(\lambda) \le \gamma$ -cl (λ) .
- g. γ -cl (γ -fp cl (λ)) = γ -fp cl (λ).
- h. γ -cl (γ -fp cl (λ)) = γ -fp cl (γ -cl (λ)) = γ -cl (λ).
- i. $(\gamma \text{-fp int } (\lambda)) \land (\gamma \text{-fp int } (\mu)) \ge \gamma \text{-fp int } (\lambda \land \mu).$
- j. $(\gamma$ -fp int $(\lambda)) \lor (\gamma$ -fp int $(\mu)) \le \gamma$ -fp int $(\lambda \lor \mu)$.

Definition 2.9

Let (X, T) be a fuzzy topological space and let $\gamma : I^X \to T$ be an operation. For any fuzzy set λ , fuzzy- γ -border of λ (briefly, γ -fb (λ)) is defined as γ -fb (λ) = $\lambda - (\gamma$ -int (λ)).

Definition 2.10

Let (X, T) be a fuzzy topological space and let γ be an operation on FPO (X) for any fuzzy set λ , fuzzy pre- γ -border of λ (briefly, γ -fpb (λ)) is defined as γ -fpb (λ) = $\lambda - (\gamma$ -fp int (λ)).

Definition 2.11

Let (X, T) be a fuzzy topological space and let $\gamma: I^{X} \to T$ be an operation. For any fuzzy set λ , fuzzy- γ -frontier of λ (briefly, γ -f Fr (λ)) is defined as γ -f Fr (λ) = (γ -cl (λ)) – (γ -int (λ)).

Definition 2.12

Let (X, T) be a fuzzy topological space and let γ be an operation on FPO (X). For any fuzzy set λ , fuzzy pre- γ -frontier of λ (briefly, γ -fp Fr (λ)) is defined as γ -fp Fr (λ) = (γ -fp cl (λ)) – (γ -fp int (λ)).

eration ∈ FPO

(X). A xists a

X). The

X). The μ : μ ≥

e defined

T be an

 $\delta(a) =$

is fuzzy

then $\alpha \leq$

[79]

M. SUDHA, E. ROJA & M.K. UMA

Proposition 2.3

Let (X, T) be a fuzzy topological space. For any two fuzzy sets λ , μ the following statements hold :

Julia

S. Ser

A. COLUMN

Formers 1

TAXAN |

(m-g-]

100 632

Lastro

Les X -

1961 m Q

13. 大台

serie Let

There .

are-y-T

E.campi

Le: X =

HER LA

Clark but

Cample

(at 1 -)

DAL LOT

14 × C

100 100

4 (b) = 0

mare Let

10:3

- a. γ -fpb (λ) $\leq \gamma$ -fp cl (1 λ).
- b. γ -fpb $(\lambda \lor \mu) \le (\gamma$ -fpb $(\lambda)) \lor (\gamma$ -fpb $(\mu))$.
- c. γ -fpb $(\lambda \land \mu) \ge (\gamma$ -fpb $(\lambda)) \land (\gamma$ -fpb $(\mu))$.
- d. $(\gamma \text{-int} (\lambda)) \lor (\gamma \text{-fb} (\lambda)) \ge \gamma \text{-int} (\lambda).$
- e. $(\gamma \text{-int} (\lambda)) \land (\gamma \text{-fb} (\lambda)) \le \gamma \text{-int} (\lambda).$
- f. γ -fp Fr (λ) = γ -fp Fr (1 λ).
- g. γ -fp Fr (γ -fp int (λ)) $\leq \gamma$ -fp Fr (λ).
- h. γ -fp Fr (γ -fp cl (λ)) $\leq \gamma$ -fp Fr (λ).
- i. $\lambda (\gamma \text{fp Fr}(\lambda)) \leq \gamma \text{fp int}(\lambda).$
- j. γ -fp Fr ($\lambda \lor \mu$) \leq (γ -fp Fr (λ)) \lor (γ -fp Fr (μ)).
- k. γ -fp Fr $(\lambda \land \mu) \ge (\gamma$ -fp Fr $(\lambda)) \land (\gamma$ -fp Fr $(\mu))$.

3. FUZZY PRE-y-T1 SPACES

Definition 3.1

A fuzzy topological space (X, T) is called

- (a) a fuzzy pre- γ -T_o space iff for any two fuzzy sets λ , μ with $\lambda \not \prec \mu$, there exists a fuzzy pre- γ -open set δ such that $\lambda \leq \delta$, $\mu \not \prec \delta$ or $\mu \leq \delta$, $\lambda \not \prec \delta$.
- (b) a fuzzy pre- γ -T₁ space iff for any two fuzzy sets λ , μ with $\lambda \not A \mu$, there exist fuzzy pre- γ open sets δ , η such that either $\lambda \leq \delta$, $\mu \not A \delta$ or $\mu \leq \eta$, $\lambda \not A \eta$.
- (c) a fuzzy pre-γ-T₂ space iff for any two fuzzy sets λ, μ with λ Å μ, there exist fuzzy pre-γ-open sets δ, η such that λ ≤ δ, μ ≤ η and δ Å η.
- (d) a fuzzy pre-γ-R_o space iff for any two fuzzy sets λ, μ, λ A (γ-fp cl (μ)) implies that μ A (γ-fp cl (λ)).

Definition 3.2

Let (X, T) be a fuzzy topological space and let γ be an operation on FPO(X). A fuzzy set λ is called fuzzy pre- γ -g closed if γ -fp cl (λ) $\leq \mu$ whenever $\lambda \leq \mu$ and μ is fuzzy pre- γ -open.

The complement of a fuzzy pre-y-gclosed set is fuzzy pre-y-g open.

[80]

Definition 3.3

A fuzzy topological space (X, T) is called fuzzy pre- γ -T_{1/2} space if every fuzzy pre- γ -g closed set is fuzzy pre- γ -closed.

Remark 3.1

From the above definitions we have the following implications.

fuzzy pre- γ -T₂ space \Rightarrow fuzzy pre- γ -T₁ space \Rightarrow fuzzy pre- γ -T_{1/2}space \Rightarrow fuzzy pre- γ -T₀ space.

The converse statements need not be true, as shown in the following examples. **Example 3.1**

Let $X = \{a, b\}$. Define $T = \{0, 1, \lambda_1, \lambda_2, \lambda_3\}$ where $\lambda_1, \lambda_2, \lambda_3 : X \rightarrow [0, 1]$ are defined as λ_1 (a) = 0.51, λ_1 (b) = 0.7, λ_2 (a) = 0.57, λ_2 (b) = 0.78, λ_3 (a) = 0.63, λ_3 (b) = 0.83. Let γ : FPO (X) \rightarrow T be an operation. Let α , μ , δ , η : X \rightarrow [0, 1] be defined as α (a) = 0.3, α -(b) = 0.4, μ (a) = 0.55, μ (b) = 0.75, δ (a) = 0.6, δ (b) = 0.8, η (a) = 0.65, η (b) = 0.85. Clearly μ is a fuzzy pre-open set. Now $\alpha \leq \eta$, $\alpha \leq \delta$ and $\alpha \leq \mu$. Further $\mu^{\gamma} \leq \delta$ and $\mu^{\gamma} \leq \eta$. Therefore δ and η are fuzzy pre- γ -open sets. Let θ , λ : X \rightarrow [0, 1] be such that θ (a) = 0.3, θ (b) = 0.1, λ (a) = 0.2, λ (b) = 0. Then $\theta \not A \lambda$. Further $\theta \leq \delta$, $\lambda \not A \delta$ and $\lambda \leq \eta$, $\dot{\theta} \not A \eta$. Hence (X, T) is a fuzzy pre- γ -T₁ space but not a fuzzy pre- γ -T₂ space.

Example 3.2

Let X = {a, b}. Define T = { 0, 1, λ_1 , λ_2 , λ_3 } where λ_1 , λ_2 , λ_3 : X \rightarrow [0, 1] are defined as λ_1 (a) = 0.5, λ_1 (b) = 0.6, λ_2 (a) = 0.7, λ_2 (b) = 0.75, λ_3 (a) = 0.8, λ_3 (b) = 0.9. Let γ : FPO (X) \rightarrow T be an operation. The space (X, T) is a fuzzy pre- γ -T_{1/2} space but not a fuzzy pre- γ -T₁ space.

Example 3.3

Let X = { a, b }. Define T = { 0, 1, λ_1 , λ_2 } where

λ₁, λ₂ : X → [0, 1] are defined as λ₁ (a) = 0.3, λ₁ (b) = 0.2, λ₂ (a) = 0.45, λ₂ (b) = **0.4**. Let γ : FPO (X) → T be an operation. Let α, μ, δ : X → [0, 1] be defined as **a** (a) = 0.2, α (b) = 0.3, μ (a) = 0.4, μ (b) = 0.3, δ (a) 0.55, δ (b) = 0.65. Clearly μ **b** a fuzzy pre-open set. Now, α ≤ δ, α ≤ μ and μ^γ ≤ δ. Therefore δ is a fuzzy preopen set. Let θ, ρ : X → [0, 1] be defined as θ (a) = 0.3, θ (b) = 0.4, ρ (a) = 0.4, **b** = 0.2. Then θ Å ρ. Now, θ ≤ δ and ρ Å δ. Hence (X, T) is a fuzzy preopen set. Let λ : X → [0, 1] be defined as λ (a) = 0.5, λ (b) = 0.45. Now, λ ≤ δ and γ-

ere exists

there exist

there exist

-fp cl (μ))

FPO(X). A

 $\leq \mu$ and μ is

Aη.

fp cl(λ) $\leq \delta$. Therefore λ is a fuzzy pre- γ -g closed set. But not a fuzzy pre- γ -closed set. Hence (X, T) is not a fuzzy pre- γ -T¹/₂ space.

Proposition 3.1

Let (X, T) be a fuzzy topological space . Then

- (a) for all fuzzy pre- γ -open set λ in (X, T), $\lambda q \mu$ iff
 - $\lambda q (\gamma$ -fp cl (μ)), where μ is any fuzzy set in (X, T).
- (b) $\delta q (\gamma fp cl (\lambda)) iff \lambda q \mu$, for all fuzzy pre- γ -open set μ in (X, T), with $\delta \leq \mu$. **Proof:**
- (a) Let λ be a fuzzy pre-γ-open set such that λ q μ. Then since μ ≤ γ-fp cl (μ), λ q (γ-fp cl (μ)). Conversely let λ be a fuzzy pre-γ-open set in (X, T) such that λ Å μ. Then μ ≤ 1 λ and so γ-fp cl (μ) ≤ γ-fp cl (1 λ) = 1 λ. Thus λ Å (γ-fp cl (μ)).
- (b) Let δq (γ -fp cl (λ)) and let μ be a fuzzy pre- γ -open set in (X, T) such that $\delta \leq \mu$. Then μq (γ -fp cl (λ)). By (a), $\mu q \lambda$ for all fuzzy pre- γ -open set μ with $\delta \leq \mu$. Conversely suppose that $\delta \not A$ (γ -fp cl (λ)). Then $\delta \leq 1 (\gamma$ -fp cl (λ)). Let $\mu = 1 (\gamma$ -fp cl (λ)). Then μ is a fuzzy pre- γ -open set with $\delta \leq \mu$. Since $\lambda \leq \gamma$ -fp cl (λ), $\mu = 1 (\gamma$ -fp cl (λ)) $\leq 1 \lambda$. Therefore $\lambda \not A \mu$.

Proposition 3.2

Let (X, T) be a fuzzy topological space. For any two fuzzy sets δ , ρ in (X, T), the following statements are equivalent :

- (a) (X, T) is a fuzzy pre- γ -R_o space.
- (b) If δ A λ = γ-fp cl (λ), where λ is any fuzzy set in (X, T), then there exists a fuzzy pre-γ-open set μ in (X, T), such that δ A μ and λ ≤ μ.
- (c) If $\delta \not A \lambda = \gamma$ -fp cl (λ) then (γ -fp cl (δ)) $\not A \lambda = \gamma$ -fp cl (λ), where λ is any fuzzy set in (X, T).
- (d) If $\delta \not A$ (γ -fp cl (ρ)) then (γ -fp cl (δ)) $\not A$ (γ -fp cl (ρ)).

Proof:

(a) \Rightarrow (b) Let $\delta \not A \lambda = \gamma$ -fp cl (λ). Since γ -fp cl (ρ) $\leq \gamma$ -fp cl (λ), for each $\rho \leq \lambda$, $\delta \not A$ (γ -fp cl (ρ)). Then by (a), $\rho \not A$ (γ -fp cl (δ)). Then by (b) of Proposition 3.1, there exists a fuzzy pre- γ -open set η in (X, T), such that $\delta \not A \eta$ and $\rho \leq \eta$. Let $\mu = \lor \{\eta : \delta \not A \eta \}$. Then $\delta \not A \mu$ and $\lambda \leq \mu$, where μ is fuzzy pre- γ -open in (X, T). $(h) \Rightarrow (c)$ in (X, T) $S \gamma$ -fp cl (Hence $(\gamma$ - $(c) \Rightarrow (d)$ $(d) \Rightarrow (d)$ $(d) \Rightarrow (a)$ (f)-fp cl (δ) (f) (f)(f) (f) (f)(f) (f)(f) (f) (f)(f) (f) (f)(f) (f) (f)(f) (f) (f) (f)(f) (f) (f

L= (X, T), $(30) \rightarrow T, \beta$ (F) and FP Definition -Lat.f: (X, T f is ca 1040 (Y. S). f is cal T), f (λ f is call min (Y. I is calle (X. T). I Proposition 4 a mapping f : 5 d (1 (A)). fo Propentition 4. S. Burgering for (36d (A)). manufaction 4.3

[82]

OPERATION APPROACHES ON FUZZY PRE-OPEN SETS

-y-closed

with $\delta \leq \mu$.

from since popen set cl $(1 - \lambda)$

m set in
fuzzy pre (λ)). Then
pre-γ-open
Therefore

(X, T), the

ere exists a

any fuzzy

 $\mathbf{n} \mathbf{p} \le \lambda, \delta \mathbf{A}$ **n** 3.1, there $\mathbf{n} \mu = \vee \{\eta :$

(b) \Rightarrow (c) Let $\delta \not \exists \lambda = \gamma$ -fp cl (λ). Then by (b), there exists a fuzzy pre- γ -open set μ in (X, T), such that $\delta \not \exists \mu$ and $\lambda \leq \mu$. Since $\delta \not \exists \mu, \delta \leq 1 - \mu$. Therefore γ -fp cl (δ) $\leq \gamma$ -fp cl ($1 - \mu$) = $1 - \mu \leq 1 - \lambda$.

Hence $(\gamma$ -fp cl (δ)) $\not A \lambda = \gamma$ -fp cl (λ) .

(c) \Rightarrow (d) Let δ (\$\vec{q}\$-fp cl (\$\rho\$)\$). since γ -fpcl (\$\gamma\$-fp cl (\$\rho\$)\$) = γ -fp cl (\$\rho\$), by (c), γ -fp cl (δ) \not (\$\gamma\$-fp cl (\$\rho\$)\$).

(d) \Rightarrow (a) Let $\delta \not = (\gamma - \text{fp cl}(\rho))$. Then by (d),

 $(\gamma$ -fp cl (δ)) \not (γ -fp cl (ρ)). Since $\rho \leq \gamma$ -fp cl (ρ) , $\rho \not$ (γ -fp cl (δ)). Hence (X, T) is a fuzzy pre- γ -R₀ space.

4. FUZZY PRE - (γ, β) -CONTINUOUS MAPPINGS

Let (X, T), (Y, S) and (Z, R) be any three fuzzy topological spaces and let γ : FP0 (X) \rightarrow T, β : FP0 (Y) \rightarrow T and η : FP0 (Z) \rightarrow T be operations on FP0 (X), FPO (Y) and FPO (Z) respectively.

Definition 4.1

Let $f: (X, T) \rightarrow (Y, S)$ be a mapping. Then

- (a) f is called fuzzy pre-(γ, β)-continuous iff for each fuzzy pre-β-open set μ in (Y, S), f⁻¹ (μ) is fuzzy pre-γ-open.
- (b) f is called fuzzy pre-(γ, β)-closed iff for each fuzzy pre-γ-closed set λ in (X, T), f (λ) is fuzzy pre-β-closed.
- (c) f is called fuzzy pre-(γ, β)-g continuous iff for each fuzzy pre-β-g closed set μ in (Y, S), f⁻¹(μ) is fuzzy pre-γ-g closed.
- (d) f is called fuzzy pre-(γ, β)-g closed iff for each fuzzy pre-γ-g closed set λ in (X, T), f (λ) is fuzzy pre-β-g closed.

Proposition 4.1

A mapping $f: (X, T) \rightarrow (Y, S)$ is fuzzy pre- (γ, β) -continuous iff $f(\gamma$ -fp cl $(\lambda)) \leq \beta$ fp cl $(f(\lambda))$, for each fuzzy set λ in (X, T).

Proposition 4.2

A mapping $f: (X, T) \to (Y, S)$ is fuzzy pre- (γ, β) -continuous iff γ -fp cl $(f^{-1}(\lambda)) \leq f^{-1}(\beta$ -fp cl $(\lambda))$, for each fuzzy set λ in (Y, S). **Proposition 4.3**

[83]

Let $f: (X, T) \rightarrow (Y, S)$ be a fuzzy pre- (γ, β) -continuous and $g: (Y, S) \rightarrow (Z, R)$ be a fuzzy pre- (β, η) -continuous mappings. Then gof: $(X, T) \rightarrow (Z, R)$ is fuzzy pre- (γ, η) -continuous.

Proposition 4.4

Let $f: (X, T) \to (Y, S)$ be a mapping. Then f is a fuzzy pre- (γ, β) -closed mapping iff β -fp cl $(f(\lambda)) \leq f(\gamma$ -fp cl $(\lambda))$, for each fuzzy set λ in (X, T).

line Late

Peres

Get (

医水白

1200

2.5

200 B

1.10

5

Jetis

lin es

Sec. 3

These areas

Definition 4.2

Let $f: (X, T) \rightarrow (Y, S)$ be a bijective mapping. If both f and f⁻¹ are fuzzy pre-(γ , β)-continuous, then f is called a fuzzy pre-(γ , β)-homeomorphism.

Proposition 4.5

Let $f: (X, T) \rightarrow (Y, S)$ be a bijective mapping. Then the following statements are equivalent:

- (a) f is a fuzzy pre- (γ, β) -homeomorphism.
- (b) f is a fuzzy pre- (γ, β) -continuous and fuzzy pre- (γ, β) -open mapping.
- (c) f is a fuzzy pre- (γ, β) -continuous and fuzzy pre- (γ, β) -closed mapping.
- (d) $f(\gamma-fp cl(\lambda)) = \beta-fp cl(f(\lambda))$, for each fuzzy set λ in (X, T)

Proposition 4.6

Let $f : (X, T) \rightarrow (Y, S)$ be a fuzzy pre- (γ, β) -continuous, fuzzy pre- (γ, β) -g continuous and fuzzy pre- (γ, β) -g closed mapping. Then the following statements hold:

- (a) If f is injective and (Y, S) is a fuzzy pre-β-T¹/₂ space, then (X, T) is a fuzzy pre-γ-T¹/₂ space.
- (b) If f is surjective and (X, T) is a fuzzy pre-γ-T¹/₂ space, then (Y, S) is a fuzzy pre-β-T¹/₂ space.

Proof:

(a) Let λ be a fuzzy pre-γ-g closed set in (X, T). Since f is fuzzy pre-(γ, β)-g closed, f (λ) is fuzzy pre-β-g closed. Since (Y, S) is a fuzzy pre-β-T_{1/2} space, f (λ) is fuzzy pre-β-closed. Since f is fuzzy pre-(γ, β)continuous,

 $f^{-1}(f(\lambda))$ is fuzzy pre- γ -closed. Hence (X, T) is a fuzzy pre- γ -T_{1/2} space.

[84]

Z, R) be

mapping

my pre-(γ,

ments are

ing,

statements

is a fuzzy

is a fuzzy

f is fuzzy is a fuzzy pre-(γ, β)-

space.

(b) Let μ be a fuzzy pre- β -g closed set in (Y, S). Since f is fuzzy pre- (γ, β) -g continuous, $f^{-1}(\mu)$ is a fuzzy pre- γ -g closed set. Since (X, T) is a fuzzy pre- γ -T_{1/2} space, $f^{-1}(\mu)$ is fuzzy pre- γ -closed. Therefore $\mu = f(f^{-1}(\mu))$ is a fuzzy pre- β -closed set. Hence (Y, S) is a fuzzy pre- β -T_{1/2} space.

Proposition 4.7

Let $f: (X, T) \rightarrow (Y, S)$ be a fuzzy pre- (γ, β) -continuous injective mapping. If (Y, S) is a fuzzy pre- β - T_2 (resp. fuzzy pre- β - T_1) space then (X, T) is a fuzzy pre- γ - T_2 (resp. fuzzy pre- γ - T_1) space. **Proof:**

Let (Y, S) be a fuzzy pre- β -T₂ space. Let λ_1 , λ_2 be any two fuzzy sets in (X, T) such that $\lambda_1 \not A \lambda_2$. Then there exist fuzzy pre- β -open sets λ , μ in (Y, S) with f (λ_1) $\leq \lambda$ and f (λ_2) $\leq \mu$ such that $\lambda \not A \mu$. Then $\lambda \leq 1 - \mu$, which implies that f⁻¹(λ) $\not A$ f⁻¹(μ). Now,

 $\lambda_1 \leq f^{-1}(\lambda)$ and $\lambda_2 \leq f^{-1}(\mu)$. Since f is fuzzy pre- (γ, β) -continuous, $f^{-1}(\lambda)$ and $f^{-1}(\mu)$ are fuzzy pre- γ -open sets such that $f^{-1}(\lambda) \not A f^{-1}(\mu)$. Hence (X, T) is a fuzzy pre- γ -T₂ space. Similarly we prove the case of fuzzy pre- β -T₁ space.

5. FUZZY PRE-γ-NORMAL AND FUZZY PRE-γ-COMPACT SPACES.

Definition 5.1 A fuzzy topological space (X, T) is said to be fuzzy pre- γ -normal if for every fuzzy pre- γ -closed set λ and fuzzy pre- γ -open set μ in (X, T) such that $\lambda \leq \mu$, there exists a fuzzy set δ such that $\lambda \leq \gamma$ -fp int(δ) $\leq \gamma$ -fp cl(δ) $\leq \mu$.

Proposition 5.1 For any fuzzy topological space (X, T) the following statements are equivalent :

- (a) (X, T) is fuzzy pre-γ-normal.
- (b) For each fuzzy pre-γ-closed set λ and each fuzzy pre-γ-open set μ in (X, T) such that λ ≤ μ, there exists a fuzzy pre-γ-open set δ in (X, T) such that γ-fp cl (λ) ≤ δ ≤ γ-fp cl (δ) ≤ μ.
- (c) For each fuzzy pre-γ-g closed set λ and each fuzzy pre-γ-open set μ in (X, T) such that λ ≤ μ, there exists a fuzzy pre-γ-open set δ in (X, T) such that γ-fp cl (λ) ≤ δ ≤ γ-fp cl (δ) ≤ μ.

Proof (a) \Rightarrow (b) The Proof is trivial.

(b) \Rightarrow (c) Let λ be any fuzzy pre- γ -g closed set and μ be any fuzzy pre- γ -open set in (X, T) such that $\lambda \leq \mu$. Since λ is fuzzy pre- γ -g closed, γ -fp cl (λ) $\leq \mu$. Now, γ fp cl (λ) is fuzzy pre- γ -closed and μ is fuzzy pre- γ -open in (X, T). By (b), there exits a fuzzy pre- γ -open set δ in (X, T) such that γ -fp cl (λ) $\leq \delta \leq \gamma$ -fp cl (δ) $\leq \mu$.

(c) \Rightarrow (a) The proof is trivial.

Proposition 5.2 Let (X, T) and (Y, S) be any two fuzzy topological spaces. If $f: (X, T) \rightarrow (Y, S)$ is a fuzzy pre- (γ, β) -homeomorphism and (Y, S) is fuzzy pre- β -normal, then (X, T) is fuzzy pre- γ -normal.

Proposition 5.3 Let $f: (X, T) \rightarrow (Y, S)$ be a fuzzy pre- (γ, β) - homeomorphism from a fuzzy pre- γ -normal space (X, T) onto a fuzzy topological space (Y, S). Then (Y, S) is fuzzy pre- β -normal.

Proof: Let λ be any fuzzy pre- β -closed set and μ be any fuzzy pre- β -open set in (Y, S) such that $\lambda \leq \mu$. Since f is fuzzy pre- (γ, β) -continuous, $f^{-1}(\lambda)$ is fuzzy pre- γ -closed and $f^{-1}(\mu)$ is fuzzy pre- γ -open in (X, T). Since (X, T) is fuzzy pre- γ -normal, there exists a fuzzy set δ in (X, T) such that

 $f^{-1}(\lambda) \le \gamma$ -fp int $(\delta) \le \gamma$ - fp cl $(\delta) \le f^{-1}(\mu)$.

Now, $f(f^{-1}(\lambda)) = \lambda \le f(\gamma - \text{fp int } (\delta)) \le f(\gamma - \text{fp cl}(\delta)) \le f(f^{-1}(\mu)) = \mu$.

That is, $\lambda \leq \beta$ -fp int $(f(\delta)) \leq \beta$ -fp cl $(f(\delta)) \leq \mu$. Therefore, (Y, S) is fuzzy pre- β -normal.

Definition 5.2 A collection $\{\lambda_i\}_{i \in J}$ of fuzzy pre- γ -open sets (resp. fuzzy pre- β -open sets) of fuzzy topological space (X, T) is called fuzzy pre- γ (resp. fuzzy pre- β)-covering of (X, T) if $1_x \leq \vee \lambda_i$.

A fuzzy topological space (X, T) is called fuzzy pre- γ (resp. fuzzy pre- β)-compact if every fuzzy pre- γ (resp. fuzzy pre- β)-cover of (X, T) has a finite subcover.

A collection { λ_i } $_{i \in J}$ of fuzzy pre- γ (resp. fuzzy pre- β)-open sets in (X, T) is called fuzzy pre- γ (resp. fuzzy pre- β)-cover of a fuzzy set μ in (X, T) if $\mu \leq \sqrt{\lambda_i}$. **Proposition 5.4** Let $f : (X, T) \rightarrow (Y, S)$ be an fuzzy pre- (γ, β) -continuous surjective function of a fuzzy pre- γ -compact space (X, T) onto a fuzzy topological space (Y, S). Then (Y, S) is fuzzy pre- β -compact.

and in times set (it) estations.

Propo functio compac

B

F

(2

C) 19

Sa apj

33.

Ra

573

\$77

Sin

200

Sm

19.

Sog

- 60

Gen

(ims

Ŀ.

42

王

16

*

 $-\gamma$ -open set μ. Now, γby (b), there d (δ) ≤ μ.

spaces. If f: fuzzy pre-β-

pace (Y, S).

open set in fuzzy pre-γ-

fuzzy pre-γ-

s fuzzy pre-β-

fuzzy pre-β-

e-β)-compact bcover. in (X, T) is if $\mu \le \lor \lambda_i$. b) -continuous onto a fuzzy

Tel Inora

Proposition 5.5 Let $f : (X, T) \rightarrow (Y, S)$ be a fuzzy pre- (γ, β) -open bijective function and (Y, S) be a fuzzy pre- β -compact space. Then (X, T) is fuzzy pre- γ -compact.

REFERENCES

- Bin Shahna.A.S. On fuzzy strong semi continuity and fuzzy pre continuity, Fuzzy Sets and Systems., 44 (1991), 303-308.
- Caldas. M., Jafari. S and Noiri. T. Notions via g-open sets, Kochi J.Math., 2 (2007), 43-50.
- Chang.C.L. Fuzzy topological spaces, J.Math. Anal. Appl., 24 (1968), 182-190.
- Sai Sundara Krishnan. G., Ganster. M. and Balachandran.K. Operation approaches on semi-open sets and applications, Kochi J.Math., 2 (2007), 21-33.
- Ramadan.A.A., Abbas.S.E. and Abd el Latif.A.A. On fuzzy bitopological spaces in Sostak's sense, Commun. Korean. Math. Soc., 21 (2006), 865-877.
- Singal.M.K. and Prakash. N. Fuzzy pre-open sets and Fuzzy pre-separation axioms, Fuzzy Sets and Systems, 44 (1991), 273-281.
- Smets.P. The degree of belief in a fuzzy event, Inform. Sci., 25 (1981), 1-19.
- Sugeno.M. An introductory survey of fuzzy control, Inform. Sci., 36 (1985), 59 - 83.
- Uma.M.K., Roja.E. and Balasubramanian.G. On fuzzy pre-T_{1/2} and fg preconnected spaces, Mathematical Forum., Vol XV (2002-2003)
- Uma.M.K., Roja.E. and Balasubramanian.G. On some stronger forms of fuzzy pre-continuous functions, Bull. Allah. Math. Soc., 17 (2002), 101-111
- 11. Zadeh.L.A.Fuzzy sets, Information and Control, 8 (1965), 338-353.