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Lie Groups Gs ¢ and Gg, 5

CHET RAJ BHATTA
Central Department of Mathematics
Tribhuvan University. Kirtipur
email: crbhatta@yahoo.com

Abstract. We prove the Parseval’s identity for low-dimensional Nilpotent Lie
groups such as Gs_g and Gg, |5 which are important for proving Hardy uncertainty
principles type results.
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1. INTRODUCTION

Let g be an n-dimensional real Nilpotent Lie algebra and G = exp g be the
associated connected and simply connected Nilpotent Lie group. Let {xi, ..., X,}
be a strong Malcev basis of g through the ascending central series of g. In
particular, RX, is contained in the centre of g. We introduce a norm function on G
by setting for

x=exp (xX; +...+x:Xy) € G.x; € R

il = i+ x? + )
The composed map

n n
R"—>g—>G. (X1s ees Xp) —> T X; X,-—)exp( 2 Xi Xj)
i=1
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is a diffeomosphism and maps Lebesgue measure on " to Haar measure on G. In
this manner, we shall always identify g and sometimes G, as sets with R". The
measurable (integrable) functions on G can be viewed as such functions on R".
The measurable (integrable) functions on G can be viewed as such functional on
mﬂ

Let g denote the vector space dual of g and {X,", ..., X, } the basis of g which is
dual to {Xi, ..., Xn}. Then {X;, ..., X'} is Jordon Holder basis for the coad_]omt

action of G on g’. We shall identify g with R" via the map & = (&), ... &) > 2
i=1

Ll - - n

& Xj and on g . We shall identify g* with %" via the map 2 = {Z,, .., &) - 3

ji=1

2 Xj and on g we introduce the Eucledian norm relative to the basis {X;, ...,
X, }, that is

e

/=l

="+ &P+ + EH B = ).

For an operator T in a Hilbert space such that T*T is a trace class. ||T||ys will
denote the Hillbert Schmidt norm of T.

2. THREAD LIKE NILPOTENT LIE GROUPS

For n > 3, let g, be the n-dimensional real Nilpotent Lie algebra with basis
X1, ...y Xq and non trivial lie brackets [X, X1l = Xp-2s . [X1, X2] = X1
g is a (n — 1) step Nilpotent and is a product of RX, and the abelian ideal

n-1
Z RX;. Note that g; is the Heisenberg Lie algebra. Let G, = exp (gn)-

j=l

. n_l - » . . . .
For & = Z § Xj € gn, the coadjoint action of G, is given by
j=

Ad" (exp (X)) & = Z P& )X,
=1
where fori<j<n-1, P (&, t) is the polynomial in t defined by

= k ok
Pi(E, t)=k>2 (1! (1) " &k
=1
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The orbit of £ is generic with respect to the basis {X;, ..., X } if and only if
%) # 0, and the jumping indices are 2 to n. The cross section X;, for the set of
generic orbit is given by,

Xe, ={€=(1, 0,8, ..., &o-1,0) : &y € R, & # 0}
For £ € g, , let m denote the irreducible representation of Gy, absociated with .
Then the mapping & — : is bijection of X and the set of all generic irredicible

representation. Plancherel measure on é., is supported by these m:. Denoting by F
the fourier transform on R™, it follows that the Hilbert Schmidt norm of the
operator. m: (f), fe L' n L? (Gy) is given by

Ity Dl = [ FEP1 (B O o Poct (B 1, t—5) ds it

]
The following gro:p of lower dimensions such as Gs_g and Gg, 15 are found in [8].
3. PARSEVAL IDENTITY FOR Gs ¢

1 Let G =Gs ¢ =R’ e
(X1y ee3 X5) (Y15 -y ¥5)
= (X3 +y1+ Xqy3 + X5y + XaXsys +%Xs Y42+%X52 ¥ +‘é‘xz+ Y2+ Xsy3 +%st Yas
is X3+ Y3 + Xsy4, Xa + s, Xs)
A (X1, ooy X5)7'= (=X + XX + X3Xg — % X3Xs® — % X' Xs + % X4X's, —Xg + X3Xs

1.
"2x4x 3s —x3+x4x53 —X4,—x5)

Fory, y2 € R?

1 1 1
g‘!

' 1
, Xt XXs—5 XqX’s, =X3 + X4Xs, —X4, —X5) 0 (y1, ¥2) dx

A 1 1 1
= I f(x) exp 2mi [=x) + XoX5 + X3X4 — 'i' x;xzs —‘i’ x24 Xs 1 3 x4x35
ﬁ’

1 1 1
+5 X%xs — g XaX’s — (X3 + XaXs) Y1 + XaXsy1 — g Xsy1 +
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5 P T - S T | 1 ol
2 Xsy'1 = (X2 + XaXs = 3 Xax’s) Y2~ 3 Xax’s Y2 - 3 XaXs Y2 -

[ 1.5 ‘
‘5*3 52— E#synryz- —%-xsy.gyz.z] b (y1 + X4, y2 + X5) dX

- ?}4—?2(4-}'1.,?(5 —>X5—Y2
= [ fx1, %5, X3, Xa = Y1, Xs — y2) exp 2 [-x1 + Xa(Xs = ¥2)

kS :

, s . 1 |
+ X3k = y1) — 5 %3 (x5 — ¥2)’ + Xayi - g (ks = y2)’ ;1 +

1 ,, ‘ 1 _ ) !
3 (xs—y2) yi* + xay2 = Xa(%s - ¥2) Y2 — 5 (xe = 1) (Xs = y2) ¥2' = |
1 1 . 1 i
3 (xs—y2)’ yo' =3 (x5 =)’ yiya—75 (x5 — y2) yiv2)er] 9, xs) dx
" 1
= [ R X2, %, 34— 31, X5~ y2) exp 271 (X1 + XaXs —x3) [xa =3
ns
(x5 —y2)* — (X5 = ¥2) Y2)E1 + U(Y1, Y2, Xa, X5) &1) B(xa, Xs) dx
K; (¥, y2. X4, X5) = I (X1, X2, X3, X4 — Y1, X5 — y2) exp — 27 (x;&; —
" ° -mJ
1
X:Xs€) — X3 [X4 -5'(’(5 = )’2)2 —(xs—-ya)y1] & -
U(y1, Y2, X4, X5)&1) dx dx; dxs3
1
= Fizs f(&1, s & x4 -5 (xs = y2)’ = (xs = y2) 2] G
E1, X4 — Y1, X5 — y2) exp 27 i U(yy, y2, X4, X5) & 0
= I | K; (V1> Y2, X4, X5)[ dy; dyz dxs dxs ",
wt " h
s, Dl = J [Fizs (€1, =xs&1, ~[x4 =5 (Xs = ¥2)" = (xs = y2) y2] 2

K
&1, X4 — Y1, Xs — y2] dy; dya dxy dxs

: =l
5 §] 3, X4 .,EJ] X4
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=X

5%" J: [Fi25 flE1. Xs, X4 + G (—g’—'h)z + (Ei- Yz) Yz) &

—(‘5'7&1 =¥i= }j‘ = Yz) dy; dy; dx4 dxs

1 1
Yi—=>-N -_é_lxh Yz—*-*}’z—axs

= é_lli I |F123 f(E)1, X5, Xa + G ¥ - ¥2 (}'2 s é "5))

9“

&1, yi. y2) dyy dys dxy dxs
1 -1
= &2 m‘[ [Fia (&1, u‘l. X+ (’? v Ei—y2 u) vis 2
dydy, dxg du
1,
X4>Xt5y2 Sity2u

1
= i I [Fi3 f(E1, wi Xa, y1, y2)FF dyr dya dxs du
gt
1 :
= 77 [ IFifGu, woy, y2)f dys dys dw du

lm‘

g

4. PARSEVAL IDENTITY FOR Gg, 5
G= Ggl 15= ERG
(X1s wery X6) (Y15 wos Y6) = (X1 + Y1 + XgYa, X2+ ¥2 + X5 Ya, X3 +y3 + XeY¥s, X4 + Y4, Xs + Vs,
X5+ ¥6)
(X1, X2, ooy Xg) ™ = (X1 + XaXs, —X2 + XaXs, —X3 + XsXg, —X4, —Xs, —Xg)
For ¢ € L2(R)

? (nf,l. £2.53. :6) ¢ (Y)Q gz #0
I f(x) Mz, 85, 25,8, (X1 + XaXe, =X + XaXs, —X3 + X5Xg, =X, —X3, —Xp) ¢ (¥) dx
w‘

&

J| 00 exp 2mi [(x1 + x0) 1 + (2 + Xas) Ba + (%3 + Xsxg —xsxe) s+ 7

wb
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1 s
(—x6y =5 X% &1) — Xe&1 + Xay] §(y + &axXs + Eixe) dx
. 1
Applying Xs = & (x5~ ¥ - Gixe)

|§2] j f(x1, X2, X3, m,éz(xs,-y &, X¢), X) €Xp [(-x; + X4Xg) &1 + (X2 + X4

1,
(=Y ~ER) B (s B+ 22 ey - 3220~ e+ ] § v
1 1 ;
T I f(x1, X2, X3, X4, 7 (X5 =y — &1, X6), X) €xp. 27i [~ X181 — X282~ X383 +
I8l 2 &
& )
XaXs + g (= X6y =7 X6 &1) — XeSe] 9-(xs) dx
) is the integral operator on Iis (R) where kernel is

1 1 .
K. 5 5329 (V> X5) = &l J; fi(xi1, X2, X3, Xa, 5 (xs —y - &1 Xe), Xo) €xp. (271)

[ Z Xii — X4Xs +§‘[x6y % I X% &1 + XeEg] dx; dxa dx; dxq dxe
i=1

wnl

1
I_é;l I F\F2FsFy (&1, &2, &3, Xs % (x5 —y — E1X6), Xs) €xp (— 2xi)

[é'(xb"‘*' X% &1) + XeXe] dxe

5! f 2
||f("§.,e_2.-a3,z,6)|| * f 1K (e, 25, 25,89 (¥s X5)I” dy dxs

| Fi F2 F3 Fy (1, &2, &3, %5, 7 (Xs — ¥ - &1 Xe, Xe) €xp. (27i)
§

won

|§z|

(5 sy +3% &)+ xa8e) g dy i

1
y>Y-3%&

“h



o
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2= [ [ FIFSFSFa (81, & &5 —xs o (5= y -5 Bk, x6) exp (27
lézlﬂ, S 1128384 (S, Q2. S5, xs,§2 .s Y =75 GiXs), X6) €Xp

(& (xay + xa80) def dy i
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